BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11677837)

  • 21. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta.
    Aguirre-Crespo F; Vergara-Galicia J; Villalobos-Molina R; Javier López-Guerrero J; Navarrete-Vázquez G; Estrada-Soto S
    Life Sci; 2006 Aug; 79(11):1062-8. PubMed ID: 16630635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trimetazidine modulates AMPA/kainate receptors in rat vestibular ganglion neurons.
    Dayanithi G; Desmadryl G; Travo C; Chabbert C; Sans A
    Eur J Pharmacol; 2007 Nov; 574(1):8-14. PubMed ID: 17658512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiopathology of H3-receptors and pharmacology of betahistine.
    Van Cauwenberge PB; De Moor SE
    Acta Otolaryngol Suppl; 1997; 526():43-6. PubMed ID: 9107355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.
    Biesdorf S; Malinvaud D; Reichenberger I; Pfanzelt S; Straka H
    J Neurophysiol; 2008 Apr; 99(4):1758-69. PubMed ID: 18256163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release.
    Li DP; Chen SR; Pan HL
    J Neurophysiol; 2002 Nov; 88(5):2664-74. PubMed ID: 12424302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells.
    Derbenev AV; Linn CL; Guth PS
    J Neurophysiol; 2005 Nov; 94(5):3134-42. PubMed ID: 16222072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of the efferent system in the isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from single fibres of the posterior nerve.
    Rossi ML; Prigioni I; Valli P; Casella C
    Brain Res; 1980 Mar; 185(1):125-37. PubMed ID: 6965463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of betahistine metabolites on frog ampullar receptors.
    Botta L; Mira E; Valli S; Zucca G; Perin P; Benvenuti C; Fossati A; Valli P
    Acta Otolaryngol; 2000 Jan; 120(1):25-7. PubMed ID: 10779181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunocytochemical and pharmacological characterization of metabotropic glutamate receptors of the vestibular end organs in the frog.
    Andrianov GN; Puyal J; Raymond J; Ventéo S; Demêmes D; Ryzhova IV
    Hear Res; 2005 Jun; 204(1-2):200-9. PubMed ID: 15925205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of chemical ischemia in cerebral cortex slices. Focus on nitric oxide.
    Cavallini S; Marti M; Marino S; Selvatici R; Beani L; Bianchi C; Siniscalchi A
    Neurochem Int; 2005 Dec; 47(7):482-90. PubMed ID: 16135390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells.
    Holt JC; Lioudyno M; Guth PS
    J Neurophysiol; 2003 Sep; 90(3):1526-36. PubMed ID: 12966175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histochemistry and role of nitric oxide synthase in the amphibian (Ambystoma tigrinum) inner ear.
    Flores A; Leon-Olea M; Vega R; Soto E
    Neurosci Lett; 1996 Feb; 205(2):131-4. PubMed ID: 8907334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning adenosine A1 and A2A receptors activation mediates L-citrulline-induced inhibition of [3H]-acetylcholine release depending on nerve stimulation pattern.
    Timóteo MA; Oliveira L; Campesatto-Mella E; Barroso A; Silva C; Magalhães-Cardoso MT; Alves-do-Prado W; Correia-de-Sá P
    Neurochem Int; 2008; 52(4-5):834-45. PubMed ID: 18022291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the vestibular function with betahistine HCl.
    Bertrand RA
    Laryngoscope; 1971 Jun; 81(6):889-98. PubMed ID: 4997046
    [No Abstract]   [Full Text] [Related]  

  • 36. Dose- and duration-dependent effects of betahistine dihydrochloride treatment on histamine turnover in the cat.
    Tighilet B; Trottier S; Lacour M
    Eur J Pharmacol; 2005 Oct; 523(1-3):54-63. PubMed ID: 16226741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effect of betahistine on polysynaptic neurons in the lateral vestibular nucleus.
    Unemoto H; Sasa M; Takaori S; Ito J; Matsuoka I
    Arch Otorhinolaryngol; 1982; 236(3):229-36. PubMed ID: 7159275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tachykinins are involved in local reflex modulation of vagally mediated striated muscle contractions in the rat esophagus via tachykinin NK1 receptors.
    Shiina T; Shimizu Y; Boudaka A; Wörl J; Takewaki T
    Neuroscience; 2006 May; 139(2):495-503. PubMed ID: 16458437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro.
    Kunitake A; Kunitake T; Stewart M
    Hippocampus; 2004; 14(8):986-99. PubMed ID: 15390173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Absence of the effect of opioid peptides on muscarine receptors in the frog vestibular apparatus].
    Andrianov IuN; Ryzhova IV; Tobias TB
    Ross Fiziol Zh Im I M Sechenova; 2003 Nov; 89(11):1431-7. PubMed ID: 14758669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.