These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11678016)

  • 21. Relative stiffness of beta titanium archwires.
    Johnson E
    Angle Orthod; 2003 Jun; 73(3):259-69. PubMed ID: 12828434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements of the torque moment in various archwire-bracket-ligation combinations.
    Hirai M; Nakajima A; Kawai N; Tanaka E; Igarashi Y; Sakaguchi M; Sameshima GT; Shimizu N
    Eur J Orthod; 2012 Jun; 34(3):374-80. PubMed ID: 21571875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The flexure modulus of elasticity of orthodontic wires.
    Goldberg AJ; Morton J; Burstone CJ
    J Dent Res; 1983 Jul; 62(7):856-8. PubMed ID: 6575030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.
    Kusy RP; Whitley JQ
    Am J Orthod Dentofacial Orthop; 2007 Feb; 131(2):229-37. PubMed ID: 17276864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A comparison of archwires of memory alloys Nitinol, NiTi Ormco and Tru-chrome which were subjected to edgewise torsion of 20 degrees, 25 degrees, 30 degrees and 35 degrees and a temperature of 37 degrees Celsius].
    Filleul MP
    Orthod Fr; 1989; 60 Pt 2():851-60. PubMed ID: 2490262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire.
    Suzuki A; Kanetaka H; Shimizu Y; Tomizuka R; Hosoda H; Miyazaki S; Okuno O; Igarashi K; Mitani H
    Angle Orthod; 2006 Nov; 76(6):1041-6. PubMed ID: 17090162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force relaxation in orthodontic arch wires.
    Hazel RJ; Rohan GJ; West VC
    Am J Orthod; 1984 Nov; 86(5):396-402. PubMed ID: 6594062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-vitro assessment of oxidative stress generated by orthodontic archwires.
    Spalj S; Mlacovic Zrinski M; Tudor Spalj V; Ivankovic Buljan Z
    Am J Orthod Dentofacial Orthop; 2012 May; 141(5):583-9. PubMed ID: 22554752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Static frictional force and surface roughness of nickel-titanium arch wires.
    Prososki RR; Bagby MD; Erickson LC
    Am J Orthod Dentofacial Orthop; 1991 Oct; 100(4):341-8. PubMed ID: 1927985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires.
    Pernier C; Grosgogeat B; Ponsonnet L; Benay G; Lissac M
    Eur J Orthod; 2005 Feb; 27(1):72-81. PubMed ID: 15743866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of three brands of round stainless steel wires used in the Begg and tip-edge techniques.
    Birkenkamp S; Pancherz H
    Aust Orthod J; 2004 Nov; 20(2):65-9. PubMed ID: 16429876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires--an in vitro study.
    Vijayalakshmi RD; Nagachandran KS; Kummi P; Jayakumar P
    Indian J Dent Res; 2009; 20(4):448-52. PubMed ID: 20139569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic properties of alternative versus single-stranded leveling archwires.
    Rucker BK; Kusy RP
    Am J Orthod Dentofacial Orthop; 2002 Nov; 122(5):528-41. PubMed ID: 12439482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.
    Wichelhaus A; Geserick M; Hibst R; Sander FG
    Dent Mater; 2005 Oct; 21(10):938-45. PubMed ID: 15923033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable modulus orthodontics advanced through an auxiliary archwire attachment.
    Braun S; Sjursen RC; Legan HL
    Angle Orthod; 1997; 67(3):219-22. PubMed ID: 9188966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The surface roughness of orthodontic wires--a laser optical and profilometric study].
    Hartel A; Bourauel C; Drescher D; Schmuth GP
    Schweiz Monatsschr Zahnmed; 1992; 102(10):1195-202. PubMed ID: 1439696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numeric modeling of torque capabilities of self-ligating and conventional brackets.
    Huang Y; Keilig L; Rahimi A; Reimann S; Eliades T; Jäger A; Bourauel C
    Am J Orthod Dentofacial Orthop; 2009 Nov; 136(5):638-43. PubMed ID: 19892278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.
    Liaw YC; Su YY; Lai YL; Lee SY
    Am J Orthod Dentofacial Orthop; 2007 May; 131(5):578.e12-8. PubMed ID: 17482074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of frictional forces during dental alignment: an experimental model with 3 nonleveled brackets.
    Matarese G; Nucera R; Militi A; Mazza M; Portelli M; Festa F; Cordasco G
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):708-15. PubMed ID: 18456144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Currently used orthodontic alloys. Review (2)].
    Sachdeva R; Sakima T; Miyazaki S; Kapila S
    Rev Odontol Univ Sao Paulo; 1990; 4(4):343-8. PubMed ID: 2135451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.