BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11678270)

  • 1. Regulatory network of tetrapyrrole biosynthesis--studies of intracellular signalling involved in metabolic and developmental control of plastids.
    Papenbrock J; Grimm B
    Planta; 2001 Sep; 213(5):667-81. PubMed ID: 11678270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of enzymes involved in chlorophyll biosynthesis.
    Reinbothe S; Reinbothe C
    Eur J Biochem; 1996 Apr; 237(2):323-43. PubMed ID: 8647070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between hy1 and gun mutants of Arabidopsis, and their implications for plastid/nuclear signalling.
    Vinti G; Hills A; Campbell S; Bowyer JR; Mochizuki N; Chory J; López-Juez E
    Plant J; 2000 Dec; 24(6):883-94. PubMed ID: 11135121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana.
    Meskauskiene R; Nater M; Goslings D; Kessler F; op den Camp R; Apel K
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12826-31. PubMed ID: 11606728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Metal chelatases involved in chlorophyll and heme biosynthetic pathways in photosynthetic organisms].
    Masuda T; Suzuki T; Takamiya K
    Tanpakushitsu Kakusan Koso; 2000 Apr; 45(5):700-9. PubMed ID: 10771597
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular localisation of ferrochelatase in higher plant chloroplasts.
    Roper JM; Smith AG
    Eur J Biochem; 1997 May; 246(1):32-7. PubMed ID: 9210462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis.
    Weinstein JD; Beale SI
    J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of heme biosynthesis in Escherichia coli.
    Woodard SI; Dailey HA
    Arch Biochem Biophys; 1995 Jan; 316(1):110-5. PubMed ID: 7840603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians.
    Yaronskaya E; Ziemann V; Walter G; Averina N; Börner T; Grimm B
    Plant J; 2003 Aug; 35(4):512-22. PubMed ID: 12904213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of tetrapyrrole biosynthesis in higher plants.
    Moulin M; Smith AG
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):737-42. PubMed ID: 16042589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants.
    Woodson JD; Perez-Ruiz JM; Chory J
    Curr Biol; 2011 May; 21(10):897-903. PubMed ID: 21565502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.
    Brunkard JO; Burch-Smith TM
    Essays Biochem; 2018 Apr; 62(1):95-107. PubMed ID: 29563221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthesis of porphyrins, chlorophylls, and vitamin B12.
    Leeper FJ
    Nat Prod Rep; 1985 Feb; 2(1):19-47. PubMed ID: 3895052
    [No Abstract]   [Full Text] [Related]  

  • 15. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis.
    Wittmann D; Sinha N; Grimm B
    Biol Chem; 2021 Feb; 402(3):379-397. PubMed ID: 33068374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase.
    Franklin KA; Linley PJ; Montgomery BL; Lagarias JC; Thomas B; Jackson SD; Terry MJ
    Plant J; 2003 Sep; 35(6):717-28. PubMed ID: 12969425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrapyrrole biosynthesis in algae and higher plants: a discussion of the importance of the 5-aminolaevulinate synthase and the dioxovalerate transaminase pathways in the biosynthesis of chlorophyll.
    Porra RJ; Grimme LH
    Int J Biochem; 1978; 9(12):883-6. PubMed ID: 744290
    [No Abstract]   [Full Text] [Related]  

  • 19. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis.
    Wang P; Ji S; Grimm B
    J Exp Bot; 2022 Aug; 73(14):4624-4636. PubMed ID: 35536687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green or red: what stops the traffic in the tetrapyrrole pathway?
    Cornah JE; Terry MJ; Smith AG
    Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.