These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11679085)

  • 1. Accumulation of calbindin in cortical pyramidal cells with ageing; a putative protective mechanism which fails in Alzheimer's disease.
    Greene JR; Radenahmad N; Wilcock GK; Neal JW; Pearson RC
    Neuropathol Appl Neurobiol; 2001 Oct; 27(5):339-42. PubMed ID: 11679085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective loss of calbindin D28K-immunoreactive neurons in the cortical layer II in brains of Alzheimer's disease: a morphometric study.
    Nishiyama E; Ohwada J; Iwamoto N; Arai H
    Neurosci Lett; 1993 Dec; 163(2):223-6. PubMed ID: 8309638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of calbindin-28K immunoreactive neurones from the cortex in Alzheimer-type dementia.
    Ichimiya Y; Emson PC; Mountjoy CQ; Lawson DE; Heizmann CW
    Brain Res; 1988 Dec; 475(1):156-9. PubMed ID: 3214722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis in ageing: studies on the calcium binding protein calbindin D28K.
    Lally G; Faull RL; Waldvogel HJ; Ferrari S; Emson PC
    J Neural Transm (Vienna); 1997; 104(10):1107-12. PubMed ID: 9503262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer's disease.
    Iritani S; Niizato K; Emson PC
    Neuropathology; 2001 Sep; 21(3):162-7. PubMed ID: 11666012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calbindin D28k mRNA in hippocampus, superior temporal gyrus and cerebellum: comparison between control and Alzheimer disease subjects.
    Maguire-Zeiss KA; Li ZW; Shimoda LM; Hamill RW
    Brain Res Mol Brain Res; 1995 Jun; 30(2):362-6. PubMed ID: 7637586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin-immunoreactive cholinergic neurones in the nucleus basalis of Meynert in Alzheimer-type dementia.
    Ichimiya Y; Emson PC; Mountjoy CQ; Lawson DE; Iizuka R
    Brain Res; 1989 Oct; 499(2):402-6. PubMed ID: 2804687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy.
    Wittner L; Eross L; Szabó Z; Tóth S; Czirják S; Halász P; Freund TF; Maglóczky ZS
    Neuroscience; 2002; 115(3):961-78. PubMed ID: 12435433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral cortical calbindin D28K and parvalbumin neurones in Down's syndrome.
    Kobayashi K; Emson PC; Mountjoy CQ; Thornton SN; Lawson DE; Mann DM
    Neurosci Lett; 1990 May; 113(1):17-22. PubMed ID: 2142259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calbindin immunoreactivity in normal human temporal neocortex.
    Ferrer I; Tuñón T; Soriano E; del Rio A; Iraizoz I; Fonseca M; Guionnet N
    Brain Res; 1992 Feb; 572(1-2):33-41. PubMed ID: 1611533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease.
    Mikkonen M; Alafuzoff I; Tapiola T; Soininen H; Miettinen R
    Neuroscience; 1999; 92(2):515-32. PubMed ID: 10408601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E
    Brain Res; 1995 Sep; 691(1-2):83-91. PubMed ID: 8590068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locally reduced levels of acidic FGF lead to decreased expression of 28-kda calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer's disease.
    Thorns V; Licastro F; Masliah E
    Neuropathology; 2001 Sep; 21(3):203-11. PubMed ID: 11666017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease.
    Riascos D; de Leon D; Baker-Nigh A; Nicholas A; Yukhananov R; Bu J; Wu CK; Geula C
    Acta Neuropathol; 2011 Nov; 122(5):565-76. PubMed ID: 21874328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer's disease.
    Hof PR; Nimchinsky EA; Celio MR; Bouras C; Morrison JH
    Neurosci Lett; 1993 Apr; 152(1-2):145-8. PubMed ID: 8515868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical gradient along the monkey occipito-temporal cortical pathway.
    Kondo H; Hashikawa T; Tanaka K; Jones EG
    Neuroreport; 1994 Jan; 5(5):613-6. PubMed ID: 8025255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of parvalbumin and calbindin-D28k immunoreactive interneurons in kitten visual cortical areas.
    Hogan D; Berman NE
    Brain Res Dev Brain Res; 1994 Jan; 77(1):1-21. PubMed ID: 8131257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex.
    Sorvari H; Soininen H; Pitkänen A
    Neuroscience; 1996 Nov; 75(2):421-43. PubMed ID: 8931007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities.
    del Rio MR; DeFelipe J
    J Chem Neuroanat; 1997 Oct; 13(4):243-51. PubMed ID: 9412906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of calbindin-28k mRNA levels in Alzheimer as compared to Huntington hippocampus.
    Sutherland MK; Wong L; Somerville MJ; Yoong LK; Bergeron C; Parmentier M; McLachlan DR
    Brain Res Mol Brain Res; 1993 Apr; 18(1-2):32-42. PubMed ID: 8479289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.