These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11679270)

  • 21. Photoinduced electron transfer in thin layers composed of fullerene-cyclic peptide conjugate and pyrene derivative.
    Fujii S; Morita T; Kimura S
    Langmuir; 2008 May; 24(10):5608-14. PubMed ID: 18419146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics.
    Santos SM; Dinis AM; Peixoto F; Ferreira L; Jurado AS; Videira RA
    Toxicol Sci; 2014 Mar; 138(1):117-29. PubMed ID: 24361870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nanohybrid membrane with lipid bilayer-like properties utilized as a conductimetric saccharin sensor.
    Chalkias NG; Giannelis EP
    Biosens Bioelectron; 2007 Oct; 23(3):370-6. PubMed ID: 17548189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of the quality of self assembled bilayer lipid membranes by using a negative potential.
    Haas H; Lamura G; Gliozzi A
    Bioelectrochemistry; 2001 Aug; 54(1):1-10. PubMed ID: 11506968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A minisensor for the rapid screening of atenolol in pharmaceutical preparations based on surface-stabilized bilayer lipid membranes with incorporated DNA.
    Nikolelis DP; Petropoulou SS; Mitrokotsa MV
    Bioelectrochemistry; 2002 Nov; 58(1):107-12. PubMed ID: 12401576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic chemoreceptive membranes. Sensing bitter or odorous substances on a synthetic lipid multibilayer film by using quartz-crystal microbalances and electric responses.
    Okahata Y; En-na G; Ebato H
    Anal Chem; 1990 Jul; 62(14):1431-8. PubMed ID: 2382840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes.
    Wang J; Wang F; Chen H; Liu X; Dong S
    Talanta; 2008 May; 75(3):666-70. PubMed ID: 18585129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Miniaturized biochemical sensing devices based on planar bilayer lipid membranes.
    Trojanowicz M
    Fresenius J Anal Chem; 2001 Sep; 371(2):246-60. PubMed ID: 11678199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer simulation study of fullerene translocation through lipid membranes.
    Wong-Ekkabut J; Baoukina S; Triampo W; Tang IM; Tieleman DP; Monticelli L
    Nat Nanotechnol; 2008 Jun; 3(6):363-8. PubMed ID: 18654548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid bilayer-based sensors and biomolecular electronics.
    Tien HT; Salamon Z; Ottova A
    Crit Rev Biomed Eng; 1991; 18(5):323-40. PubMed ID: 2036800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations.
    Mårtensson C; Agmo Hernández V
    Bioelectrochemistry; 2012 Dec; 88():171-80. PubMed ID: 22542468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentration-dependent behavior of nisin interaction with supported bilayer lipid membrane.
    Huang W; Zhang Z; Han X; Wang J; Tang J; Dong S; Wang E
    Biophys Chem; 2002 Nov; 99(3):271-9. PubMed ID: 12408941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small Angle X-ray Scattering and Electron Spin Resonance Spectroscopy Study on Fragrance Infused Cationic Vesicles Modeling Scent-Releasing Fabric Softeners.
    Ogura T; Sato T; Abe M; Okano T
    J Oleo Sci; 2018 Feb; 67(2):177-186. PubMed ID: 29367489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH.
    Mecheri B; Piras L; Caminati G
    Bioelectrochemistry; 2004 Jun; 63(1-2):13-8. PubMed ID: 15110241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer.
    Li L; Davande H; Bedrov D; Smith GD
    J Phys Chem B; 2007 Apr; 111(16):4067-72. PubMed ID: 17402771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing.
    Sheng Q; Liu R; Zheng J
    Bioelectrochemistry; 2013 Dec; 94():39-46. PubMed ID: 23787095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.
    Sastre J; Mannelli I; Reigada R
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2872-2882. PubMed ID: 28780125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of the electric response of lipid bilayers to bitter substances.
    Naito M; Sasaki N; Kambara T
    Biophys J; 1993 Sep; 65(3):1219-30. PubMed ID: 8241402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants.
    Khadka R; Aydemir N; Carraher C; Hamiaux C; Colbert D; Cheema J; Malmström J; Kralicek A; Travas-Sejdic J
    Biosens Bioelectron; 2019 Feb; 126():207-213. PubMed ID: 30415156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina.
    Largueze JB; Kirat KE; Morandat S
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):33-40. PubMed ID: 20417072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.