BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11679275)

  • 1. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers.
    Suárez-Rodríguez JL; Díaz-García ME
    Biosens Bioelectron; 2001 Dec; 16(9-12):955-61. PubMed ID: 11679275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic evaluation of polymers imprinted with analogs of chloramphenicol and application to selective solid-phase extraction.
    Schirmer C; Meisel H
    Anal Bioanal Chem; 2009 Aug; 394(8):2249-55. PubMed ID: 19575191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor.
    Gao F; Feng S; Chen Z; Li-Chan EC; Grant E; Lu X
    J Food Sci; 2014 Dec; 79(12):N2542-9. PubMed ID: 25393060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent monomers: "bricks" that make a molecularly imprinted polymer "bright".
    Wan W; Wagner S; Rurack K
    Anal Bioanal Chem; 2016 Mar; 408(7):1753-71. PubMed ID: 26613794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents.
    Castell OK; Allender CJ; Barrow DA
    Biosens Bioelectron; 2006 Oct; 22(4):526-33. PubMed ID: 16938448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination.
    Guo L; Guan M; Zhao C; Zhang H
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1431-8. PubMed ID: 18949463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review.
    Henry OY; Cullen DC; Piletsky SA
    Anal Bioanal Chem; 2005 Jun; 382(4):947-56. PubMed ID: 15940451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.
    Yu C; Mosbach K
    J Chromatogr A; 2000 Aug; 888(1-2):63-72. PubMed ID: 10949473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.
    Amjadi M; Jalili R; Manzoori JL
    Luminescence; 2016 May; 31(3):633-9. PubMed ID: 27037966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of digoxin in serum samples using a flow-through fluorosensor based on a molecularly imprinted polymer.
    González GP; Hernando PF; Durand Alegría JS
    Biosens Bioelectron; 2008 Jun; 23(11):1754-8. PubMed ID: 18299192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis.
    Urraca JL; Marazuela MD; Merino ER; Orellana G; Moreno-Bondi MC
    J Chromatogr A; 2006 May; 1116(1-2):127-34. PubMed ID: 16595138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Bite-and-Switch" approach using computationally designed molecularly imprinted polymers for sensing of creatinine.
    Subrahmanyam S; Piletsky SA; Piletska EV; Chen B; Karim K; Turner AP
    Biosens Bioelectron; 2001 Dec; 16(9-12):631-7. PubMed ID: 11679238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and chromatographic evaluation of molecularly imprinted polymers prepared by the substructure approach for the class-selective recognition of glucuronides.
    Ambrosini S; Serra M; Shinde S; Sellergren B; De Lorenzi E
    J Chromatogr A; 2011 Sep; 1218(39):6961-9. PubMed ID: 21871628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers.
    Boyd B; Björk H; Billing J; Shimelis O; Axelsson S; Leonora M; Yilmaz E
    J Chromatogr A; 2007 Dec; 1174(1-2):63-71. PubMed ID: 17900594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods.
    Shi X; Wu A; Zheng S; Li R; Zhang D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):24-30. PubMed ID: 17126085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and selective extraction of chloramphenicol from soil by matrix solid-phase dispersion using molecularly imprinted polymer as dispersant.
    Wang T; Tong J; Sun M; Chen L
    J Sep Sci; 2011 Aug; 34(15):1886-92. PubMed ID: 21674791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials.
    Jacob R; Tate M; Banti Y; Rix C; Mainwaring DE
    J Phys Chem A; 2008 Jan; 112(2):322-31. PubMed ID: 18095662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples.
    Wei S; Li J; Liu Y; Ma J
    J Chromatogr A; 2016 Nov; 1473():19-27. PubMed ID: 27816223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured molecularly imprinted polymers for protein chemosensing.
    Dabrowski M; Lach P; Cieplak M; Kutner W
    Biosens Bioelectron; 2018 Apr; 102():17-26. PubMed ID: 29101784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey.
    Schirmer C; Meisel H
    J Chromatogr A; 2006 Nov; 1132(1-2):325-8. PubMed ID: 17014862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.