These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 11679283)
1. High-throughput PCR in silicon based microchamber array. Nagai H; Murakami Y; Yokoyama K; Tamiya E Biosens Bioelectron; 2001 Dec; 16(9-12):1015-9. PubMed ID: 11679283 [TBL] [Abstract][Full Text] [Related]
2. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lee DS; Park SH; Yang H; Chung KH; Yoon TH; Kim SJ; Kim K; Kim YT Lab Chip; 2004 Aug; 4(4):401-7. PubMed ID: 15269812 [TBL] [Abstract][Full Text] [Related]
3. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Neuzil P; Zhang C; Pipper J; Oh S; Zhuo L Nucleic Acids Res; 2006 Jun; 34(11):e77. PubMed ID: 16807313 [TBL] [Abstract][Full Text] [Related]
4. Application of a microchamber array for DNA amplification using a novel dispensing method. Matsubara Y; Kobayashi M; Morita Y; Tamiiya E Arch Histol Cytol; 2002 Dec; 65(5):481-8. PubMed ID: 12680464 [TBL] [Abstract][Full Text] [Related]
5. PCR amplification using electrolytic resistance for heating and temperature monitoring. Heap DM; Herrmann MG; Wittwer CT Biotechniques; 2000 Nov; 29(5):1006-12. PubMed ID: 11084862 [TBL] [Abstract][Full Text] [Related]
6. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Woolley AT; Hadley D; Landre P; deMello AJ; Mathies RA; Northrup MA Anal Chem; 1996 Dec; 68(23):4081-6. PubMed ID: 8946790 [TBL] [Abstract][Full Text] [Related]
7. Development of a microchamber array for picoliter PCR. Nagai H; Murakami Y; Morita Y; Yokoyama K; Tamiya E Anal Chem; 2001 Mar; 73(5):1043-7. PubMed ID: 11289415 [TBL] [Abstract][Full Text] [Related]
8. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Matsubara Y; Kerman K; Kobayashi M; Yamamura S; Morita Y; Tamiya E Biosens Bioelectron; 2005 Feb; 20(8):1482-90. PubMed ID: 15626601 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of thermal cyclers for PCR in a rapid cycling condition. Kim YH; Yang I; Bae YS; Park SR Biotechniques; 2008 Apr; 44(4):495-6, 498, 500 passim. PubMed ID: 18476814 [TBL] [Abstract][Full Text] [Related]
10. Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Rodriguez I; Lesaicherre M; Tie Y; Zou Q; Yu C; Singh J; Meng LT; Uppili S; Li SF; Gopalakrishnakone P; Selvanayagam ZE Electrophoresis; 2003 Jan; 24(1-2):172-8. PubMed ID: 12652588 [TBL] [Abstract][Full Text] [Related]
11. Strategies for enhancing the speed and integration of microchip genetic amplification. Hoang VN; Kaigala GV; Atrazhev A; Pilarski LM; Backhouse CJ Electrophoresis; 2008 Dec; 29(23):4684-94. PubMed ID: 19053066 [TBL] [Abstract][Full Text] [Related]
12. Polymerase Chain Reaction using "V" Shape Thermal Cycling Program. Chen R; Lu X; Li M; Chen G; Deng Y; Du F; Dong J; Huang X; Cui X; Tang Z Theranostics; 2019; 9(6):1572-1579. PubMed ID: 31037124 [TBL] [Abstract][Full Text] [Related]
13. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system. Zhong R; Pan X; Jiang L; Dai Z; Qin J; Lin B Electrophoresis; 2009 Apr; 30(8):1297-305. PubMed ID: 19319907 [TBL] [Abstract][Full Text] [Related]
14. Thirty-cycle temperature optimization of a closed-cycle capillary PCR machine. Chiou JT; Matsudaira PT; Ehrlich DJ Biotechniques; 2002 Sep; 33(3):557-8, 560, 562 passim. PubMed ID: 12238766 [TBL] [Abstract][Full Text] [Related]
15. Novel approach for assessing performance of PCR cyclers used for diagnostic testing. Schoder D; Schmalwieser A; Schauberger G; Hoorfar J; Kuhn M; Wagner M J Clin Microbiol; 2005 Jun; 43(6):2724-8. PubMed ID: 15956389 [TBL] [Abstract][Full Text] [Related]
16. [Development of high-throughput polymerase chain reaction system and its performance]. Sasaki N Hokkaido Igaku Zasshi; 1997 May; 72(3):249-59. PubMed ID: 9226465 [TBL] [Abstract][Full Text] [Related]
18. Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Wittwer CT; Fillmore GC; Garling DJ Anal Biochem; 1990 May; 186(2):328-31. PubMed ID: 2363506 [TBL] [Abstract][Full Text] [Related]
19. Polymerase chain reaction of 2-kb cyanobacterial gene and human anti-alpha1-chymotrypsin gene from genomic DNA on the In-Check single-use microfabricated silicon chip. Consolandi C; Severgnini M; Frosini A; Caramenti G; De Fazio M; Ferrara F; Zocco A; Fischetti A; Palmieri M; De Bellis G Anal Biochem; 2006 Jun; 353(2):191-7. PubMed ID: 16620755 [TBL] [Abstract][Full Text] [Related]