These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11679327)

  • 21. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing.
    Biasi C; Graça MAS; Santos S; Ferreira V
    Oecologia; 2017 Jun; 184(2):555-568. PubMed ID: 28421326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream.
    Das M; Royer TV; Leff LG
    Appl Environ Microbiol; 2007 Feb; 73(3):756-67. PubMed ID: 17142366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of fungal and bacterial production methodologies to decomposing leaves in streams.
    Suberkropp K; Weyers H
    Appl Environ Microbiol; 1996 May; 62(5):1610-5. PubMed ID: 16535312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2008 Nov; 56(4):688-95. PubMed ID: 18443846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf litter microbial decomposition in salinized streams under intermittency.
    Gonçalves AL; Simões S; Bärlocher F; Canhoto C
    Sci Total Environ; 2019 Feb; 653():1204-1212. PubMed ID: 30759560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches.
    Martínez A; Larrañaga A; Pérez J; Descals E; Pozo J
    FEMS Microbiol Ecol; 2014 Jan; 87(1):257-67. PubMed ID: 24111990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms.
    Duarte S; Pascoal C; Cássio F; Bärlocher F
    Oecologia; 2006 Apr; 147(4):658-66. PubMed ID: 16496184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal community on decomposing leaf litter undergoes rapid successional changes.
    Voříšková J; Baldrian P
    ISME J; 2013 Mar; 7(3):477-86. PubMed ID: 23051693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers.
    Jabiol J; Cornut J; Tlili A; Gessner MO
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30102345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics.
    Pereira A; Figueiredo A; Ferreira V
    Microb Ecol; 2021 Jul; 82(1):257-273. PubMed ID: 33864129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaf litter decomposition in Torna stream before and after a red mud disaster.
    Kucserka T; Karádi-Kovács K; Vass M; Selmeczy GB; Hubai KE; Üveges V; Kacsala I; Törő N; Padisák J
    Acta Biol Hung; 2014 Mar; 65(1):96-106. PubMed ID: 24561898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invertebrates, Fungal Biomass, and Leaf Breakdown in Pools and Riffles of Neotropical Streams.
    Tavares Martins R; Souza da Silveira L; Pereira Lopes M; Gama Alves R
    J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Sci Total Environ; 2009 Jul; 407(14):4283-8. PubMed ID: 19411090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference.
    Wright MS; Covich AP
    Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Air temperature more than drought duration affects litter decomposition under flow intermittency.
    Simões S; Gonçalves AL; Jones TH; Sousa JP; Canhoto C
    Sci Total Environ; 2022 Jul; 829():154666. PubMed ID: 35314243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Litter Quality Modulates Effects of Dissolved Nitrogen on Leaf Decomposition by Stream Microbial Communities.
    Jabiol J; Lecerf A; Lamothe S; Gessner MO; Chauvet E
    Microb Ecol; 2019 May; 77(4):959-966. PubMed ID: 30899980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities.
    Gomes PP; Ferreira V; Tonin AM; Medeiros AO; Júnior JFG
    Microb Ecol; 2018 May; 75(4):854-862. PubMed ID: 29124310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics.
    Frainer A; Moretti MS; Xu W; Gessner MO
    Ecology; 2015 Feb; 96(2):550-61. PubMed ID: 26240875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.