These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11679355)

  • 1. Detection and quantification of snow algae with an airborne imaging spectrometer.
    Painter TH; Duval B; Thomas WH; Mendez M; Heintzelman S; Dozier J
    Appl Environ Microbiol; 2001 Nov; 67(11):5267-72. PubMed ID: 11679355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars?
    Jehlička J; Culka A; Nedbalová L
    Astrobiology; 2016 Dec; 16(12):913-924. PubMed ID: 27901343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.
    Stibal M; Elster J; Sabacká M; Kastovská K
    FEMS Microbiol Ecol; 2007 Feb; 59(2):265-73. PubMed ID: 17313577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.
    Rezanka T; Nedbalová L; Sigler K; Cepák V
    Phytochemistry; 2008 Jan; 69(2):479-90. PubMed ID: 17681561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers.
    Řezanka T; Nedbalová L; Kolouchová I; Sigler K
    Phytochemistry; 2013 Apr; 88():34-42. PubMed ID: 23398889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term acclimation of Pseudokirchneriella subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology.
    Bossuyt BT; Janssen CR
    Aquat Toxicol; 2004 May; 68(1):61-74. PubMed ID: 15110470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille.
    Gorton HL; Williams WE; Vogelmann TC
    Photochem Photobiol; 2001 Jun; 73(6):611-20. PubMed ID: 11421066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco.
    Duval B; Duval E; Hoham RW
    Int Microbiol; 1999 Mar; 2(1):39-42. PubMed ID: 10943390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI.
    Lütz-Meindl U; Lütz C
    Micron; 2006; 37(5):452-8. PubMed ID: 16376553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.
    Gorton HL; Vogelmann TC
    Photochem Photobiol; 2003 Jun; 77(6):608-15. PubMed ID: 12870846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface gas-exchange processes of snow algae.
    Williams WE; Gorton HL; Vogelmann TC
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):562-6. PubMed ID: 12518048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea.
    Michio K; Kengo K; Yasunori K; Hitoshi M; Takayuki Y; Hideaki Y; Hiroshi S
    Mar Pollut Bull; 2003; 47(1-6):118-25. PubMed ID: 12787607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigment signatures of algal communities and their implications for glacier surface darkening.
    Halbach L; Chevrollier LA; Doting EL; Cook JM; Jensen MB; Benning LG; Bradley JA; Hansen M; Lund-Hansen LC; Markager S; Sorrell BK; Tranter M; Trivedi CB; Winkel M; Anesio AM
    Sci Rep; 2022 Oct; 12(1):17643. PubMed ID: 36271236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold Adaptation Mechanisms of a Snow Alga
    Peng Z; Liu G; Huang K
    Front Microbiol; 2020; 11():611080. PubMed ID: 33584575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.
    Remias D; Pichrtová M; Pangratz M; Lütz C; Holzinger A
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw030. PubMed ID: 26884467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations of algal communities cause darkening of a Greenland glacier.
    Lutz S; Anesio AM; Jorge Villar SE; Benning LG
    FEMS Microbiol Ecol; 2014 Aug; 89(2):402-14. PubMed ID: 24920320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative biosorption of Pb2+ by live algal consortium and immobilized dead biomass from aqueous solution.
    Kumar R; Goyal D
    Indian J Exp Biol; 2009 Aug; 47(8):690-4. PubMed ID: 19775077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoplankton monitoring by high performance flow cytometry: a successful approach?
    Rutten TP; Sandee B; Hofman AR
    Cytometry A; 2005 Mar; 64(1):16-26. PubMed ID: 15688354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triacylglycerol Production in the Snow Algae Chlamydomonas nivalis under Different Nutrient Conditions.
    Liu YC; Nakamura Y
    Lipids; 2019 Apr; 54(4):255-262. PubMed ID: 31025716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated radiance profiles for automating the interpretation of airborne passive multi-spectral infrared images.
    Sulub Y; Small GW
    Appl Spectrosc; 2008 Oct; 62(10):1049-59. PubMed ID: 18926012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.