These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11679582)

  • 41. CD38-Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology.
    Takasawa S
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [CD38 antigen (ADP-ribosyl cyclase) and secretory mechanism of insulin].
    Taminato T; Ito T; Kato H
    Nihon Rinsho; 1997 Nov; 55 Suppl():880-7. PubMed ID: 9434581
    [No Abstract]   [Full Text] [Related]  

  • 43. Activation of CD38 by interleukin-8 signaling regulates intracellular Ca2+ level and motility of lymphokine-activated killer cells.
    Rah SY; Park KH; Han MK; Im MJ; Kim UH
    J Biol Chem; 2005 Jan; 280(4):2888-95. PubMed ID: 15556942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human CD38 and its ligand CD31 define a unique lamina propria T lymphocyte signaling pathway.
    Deaglio S; Mallone R; Baj G; Donati D; Giraudo G; Corno F; Bruzzone S; Geuna M; Ausiello C; Malavasi F
    FASEB J; 2001 Mar; 15(3):580-2. PubMed ID: 11259373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38.
    Guida L; Franco L; Zocchi E; De Flora A
    FEBS Lett; 1995 Jul; 368(3):481-4. PubMed ID: 7635203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice.
    Ceni C; Muller-Steffner H; Lund F; Pochon N; Schweitzer A; De Waard M; Schuber F; Villaz M; Moutin MJ
    J Biol Chem; 2003 Oct; 278(42):40670-8. PubMed ID: 12909645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytoskeleton-dependent inhibition of the ADP-ribosyl cyclase activity of CD38 in thrombin-stimulated platelets.
    Torti M; Tolnai Festetics E; Bertoni A; Sinigaglia F; Balduini C
    FEBS Lett; 1998 Jul; 431(1):19-22. PubMed ID: 9684857
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyclic ADP-ribose.
    Guse AH
    J Mol Med (Berl); 2000; 78(1):26-35. PubMed ID: 10759027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose.
    Summerhill RJ; Jackson DG; Galione A
    FEBS Lett; 1993 Dec; 335(2):231-3. PubMed ID: 8253202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. cADP-ribose/ryanodine channel/Ca2+-release signal transduction pathway in mesangial cells.
    Yusufi AN; Cheng J; Thompson MA; Dousa TP; Warner GM; Walker HJ; Grande JP
    Am J Physiol Renal Physiol; 2001 Jul; 281(1):F91-F102. PubMed ID: 11399650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38.
    Augustin A; Muller-Steffner H; Schuber F
    Biochem J; 2000 Jan; 345 Pt 1(Pt 1):43-52. PubMed ID: 10600637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Signal transduction via the CD38/NAD+ glycohydrolase.
    Kontani K; Kukimoto I; Kanda Y; Inoue S; Kishimoto H; Hoshino S; Nishina H; Takahashi K; Hazeki O; Katada T
    Adv Exp Med Biol; 1997; 419():421-30. PubMed ID: 9193684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of ADP-ribosyl cyclase from Euglena gracilis.
    Masuda W; Takenaka S; Tsuyama S; Inui H; Miyatake K; Nakano Y
    J Biochem; 1999 Mar; 125(3):449-53. PubMed ID: 10050031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity.
    Kukimoto I; Hoshino S; Kontani K; Inageda K; Nishina H; Takahashi K; Katada T
    Eur J Biochem; 1996 Jul; 239(1):177-82. PubMed ID: 8706705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity.
    Yamamoto-Katayama S; Sato A; Ariyoshi M; Suyama M; Ishihara K; Hirano T; Nakamura H; Morikawa K; Jingami H
    Biochem J; 2001 Jul; 357(Pt 2):385-92. PubMed ID: 11439087
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiological and pathological significance of the CD38-cyclic ADP-ribose signaling system.
    Okamoto H; Takasawa S; Nata K; Kato I; Tohgo A; Noguchi N
    Chem Immunol; 2000; 75():121-45. PubMed ID: 10851782
    [No Abstract]   [Full Text] [Related]  

  • 58. Human CD38 is an authentic NAD(P)+ glycohydrolase.
    Berthelier V; Tixier JM; Muller-Steffner H; Schuber F; Deterre P
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1383-90. PubMed ID: 9494110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca2+-mobilizing second messenger cyclic ADP-ribose.
    Shuto S; Fukuoka M; Manikowsky A; Ueno Y; Nakano T; Kuroda R; Kuroda H; Matsuda A
    J Am Chem Soc; 2001 Sep; 123(36):8750-9. PubMed ID: 11535079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo.
    Partida-Sánchez S; Cockayne DA; Monard S; Jacobson EL; Oppenheimer N; Garvy B; Kusser K; Goodrich S; Howard M; Harmsen A; Randall TD; Lund FE
    Nat Med; 2001 Nov; 7(11):1209-16. PubMed ID: 11689885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.