BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11679589)

  • 1. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.
    Tai LJ; McFall SM; Huang K; Demeler B; Fox SG; Brubaker K; Radhakrishnan I; Morimoto RI
    J Biol Chem; 2002 Jan; 277(1):735-45. PubMed ID: 11679589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
    Fu S; Rogowsky P; Nover L; Scanlon MJ
    Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative regulation of the heat shock transcriptional response by HSBP1.
    Satyal SH; Chen D; Fox SG; Kramer JM; Morimoto RI
    Genes Dev; 1998 Jul; 12(13):1962-74. PubMed ID: 9649501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the hexamer of human heat shock factor binding protein 1.
    Liu X; Xu L; Liu Y; Tong X; Zhu G; Zhang XC; Li X; Rao Z
    Proteins; 2009 Apr; 75(1):1-11. PubMed ID: 18767159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor.
    Peteranderl R; Rabenstein M; Shin YK; Liu CW; Wemmer DE; King DS; Nelson HC
    Biochemistry; 1999 Mar; 38(12):3559-69. PubMed ID: 10090742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper.
    Rabindran SK; Haroun RI; Clos J; Wisniewski J; Wu C
    Science; 1993 Jan; 259(5092):230-4. PubMed ID: 8421783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the oligomerization-state switch from a dimer to a trimer of an engineered cortexillin-1 coiled-coil variant.
    Bjelić S; Wieser M; Frey D; Stirnimann CU; Chance MR; Jaussi R; Steinmetz MO; Kammerer RA
    PLoS One; 2013; 8(5):e63370. PubMed ID: 23691037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif.
    Xu Q; Minor DL
    Protein Sci; 2009 Oct; 18(10):2100-14. PubMed ID: 19693805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1.
    Smith TA; Strelkov SV; Burkhard P; Aebi U; Parry DA
    J Struct Biol; 2002; 137(1-2):128-45. PubMed ID: 12064940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils?
    Lee DL; Lavigne P; Hodges RS
    J Mol Biol; 2001 Feb; 306(3):539-53. PubMed ID: 11178912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms.
    Wiltscheck R; Kammerer RA; Dames SA; Schulthess T; Blommers MJ; Engel J; Alexandrescu AT
    Protein Sci; 1997 Aug; 6(8):1734-45. PubMed ID: 9260286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the middle domain of ClpB from Escherichia coli.
    Kedzierska S; Akoev V; Barnett ME; Zolkiewski M
    Biochemistry; 2003 Dec; 42(48):14242-8. PubMed ID: 14640692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coiled-coil structure of group A streptococcal M proteins. Different temperature stability of class A and C proteins by hydrophobic-nonhydrophobic amino acid substitutions at heptad positions a and d.
    Cedervall T; Johansson MU; Akerström B
    Biochemistry; 1997 Apr; 36(16):4987-94. PubMed ID: 9125521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct seven-residue trigger sequence is indispensable for proper coiled-coil formation of the human macrophage scavenger receptor oligomerization domain.
    Frank S; Lustig A; Schulthess T; Engel J; Kammerer RA
    J Biol Chem; 2000 Apr; 275(16):11672-7. PubMed ID: 10766786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability.
    Lu SM; Hodges RS
    Protein Sci; 2004 Mar; 13(3):714-26. PubMed ID: 14978309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimerization of a yeast transcriptional activator via a coiled-coil motif.
    Sorger PK; Nelson HC
    Cell; 1989 Dec; 59(5):807-13. PubMed ID: 2686840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.