BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1965 related articles for article (PubMed ID: 11679633)

  • 1. Identification of ubiquitin ligases required for skeletal muscle atrophy.
    Bodine SC; Latres E; Baumhueter S; Lai VK; Nunez L; Clarke BA; Poueymirou WT; Panaro FJ; Na E; Dharmarajan K; Pan ZQ; Valenzuela DM; DeChiara TM; Stitt TN; Yancopoulos GD; Glass DJ
    Science; 2001 Nov; 294(5547):1704-8. PubMed ID: 11679633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse.
    Caron AZ; Drouin G; Desrosiers J; Trensz F; Grenier G
    J Appl Physiol (1985); 2009 Jun; 106(6):2049-59. PubMed ID: 19342435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of atrophy enhancing genes fails to ameliorate the phenotype in a mouse model of spinal muscular atrophy.
    Iyer CC; McGovern VL; Wise DO; Glass DJ; Burghes AH
    Neuromuscul Disord; 2014 May; 24(5):436-44. PubMed ID: 24656734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats.
    You JS; Park MN; Song W; Lee YS
    Appl Physiol Nutr Metab; 2010 Jun; 35(3):310-8. PubMed ID: 20555375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [MAFbx and MuRF1 mRNA expression and its relationship with muscular contractility following free muscle transfer].
    Liu AT; Yu DZ; Zhang YF; Zhang WJ; Ding WJ; Ren AJ; Fang CP; Jiang H
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2009 May; 25(3):217-21. PubMed ID: 19803207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1.
    Bodine SC; Baehr LM
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(6):E469-84. PubMed ID: 25096180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis.
    Krawiec BJ; Frost RA; Vary TC; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E969-80. PubMed ID: 16046454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ghrelin receptor agonist GHRP-2 prevents arthritis-induced increase in E3 ubiquitin-ligating enzymes MuRF1 and MAFbx gene expression in skeletal muscle.
    Granado M; Priego T; Martín AI; Villanúa MA; López-Calderón A
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E1007-14. PubMed ID: 16030067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells.
    Krawiec BJ; Nystrom GJ; Frost RA; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1555-67. PubMed ID: 17264220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure.
    Watson ML; Baehr LM; Reichardt HM; Tuckermann JP; Bodine SC; Furlow JD
    Am J Physiol Endocrinol Metab; 2012 May; 302(10):E1210-20. PubMed ID: 22354783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the Role of HDACs 4 and 5 in the Modulation of Processes Regulating MAFbx and MuRF1 Expression during Muscle Unloading.
    Mochalova EP; Belova SP; Kostrominova TY; Shenkman BS; Nemirovskaya TL
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32646070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase.
    Jogo M; Shiraishi S; Tamura TA
    FEBS Lett; 2009 Sep; 583(17):2715-9. PubMed ID: 19631210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation based on chronaxie reduces atrogin-1 and myoD gene expressions in denervated rat muscle.
    Russo TL; Peviani SM; Freria CM; Gigo-Benato D; Geuna S; Salvini TF
    Muscle Nerve; 2007 Jan; 35(1):87-97. PubMed ID: 17034040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice.
    Cong H; Sun L; Liu C; Tien P
    Hum Gene Ther; 2011 Mar; 22(3):313-24. PubMed ID: 21126200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone.
    Zhao W; Pan J; Wang X; Wu Y; Bauman WA; Cardozo CP
    Endocrinology; 2008 Nov; 149(11):5449-60. PubMed ID: 18599544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factors in muscle atrophy caused by blocked neuromuscular transmission and muscle unloading in rats.
    Nordquist J; Höglund AS; Norman H; Tang X; Dworkin B; Larsson L
    Mol Med; 2007; 13(9-10):461-70. PubMed ID: 17622304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy.
    Seaborne RA; Hughes DC; Turner DC; Owens DJ; Baehr LM; Gorski P; Semenova EA; Borisov OV; Larin AK; Popov DV; Generozov EV; Sutherland H; Ahmetov II; Jarvis JC; Bodine SC; Sharples AP
    J Physiol; 2019 Jul; 597(14):3727-3749. PubMed ID: 31093990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats.
    Adams GR; Haddad F; Bodell PW; Tran PD; Baldwin KM
    J Appl Physiol (1985); 2007 Nov; 103(5):1644-54. PubMed ID: 17872405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cold-shock protein RBM3 as a possible regulator of skeletal muscle size through expression profiling.
    Dupont-Versteegden EE; Nagarajan R; Beggs ML; Bearden ED; Simpson PM; Peterson CA
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1263-73. PubMed ID: 18753264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading.
    Nakao R; Hirasaka K; Goto J; Ishidoh K; Yamada C; Ohno A; Okumura Y; Nonaka I; Yasutomo K; Baldwin KM; Kominami E; Higashibata A; Nagano K; Tanaka K; Yasui N; Mills EM; Takeda S; Nikawa T
    Mol Cell Biol; 2009 Sep; 29(17):4798-811. PubMed ID: 19546233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 99.