These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11679695)

  • 1. Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I-.
    Macchi P; Coppens P
    Acta Crystallogr A; 2001 Nov; 57(Pt 6):656-62. PubMed ID: 11679695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. II. Chemically relevant cations and selected monovalent anions for atoms with Z = 3-112.
    Olukayode S; Froese Fischer C; Volkov A
    Acta Crystallogr A Found Adv; 2023 May; 79(Pt 3):229-245. PubMed ID: 36999622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. I. Neutral atoms with Z = 2-118.
    Olukayode S; Froese Fischer C; Volkov A
    Acta Crystallogr A Found Adv; 2023 Jan; 79(Pt 1):59-79. PubMed ID: 36601764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic scattering factors for K-shell electron energy-loss spectroscopy.
    Oxley MP; Allen LJ
    Acta Crystallogr A; 2001 Nov; 57(Pt 6):713-28. PubMed ID: 11679703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.
    Michael JR; Volkov A
    Acta Crystallogr A Found Adv; 2015 Mar; 71(Pt 2):245-9. PubMed ID: 25727874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic scattering factors for K-shell and L-shell ionization by fast electrons.
    Oxley MP; Allen LJ
    Acta Crystallogr A; 2000 Sep; 56 (Pt 5)():470-90. PubMed ID: 10967525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New benchmarks in the modelling of X-ray atomic form factors.
    Thorkildsen G
    Acta Crystallogr A Found Adv; 2023 Jul; 79(Pt 4):318-330. PubMed ID: 37265051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.
    Keith TA; Frisch MJ
    J Phys Chem A; 2011 Nov; 115(45):12879-94. PubMed ID: 21780749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified form factors from multiconfiguration Dirac-Fock wave functions for neutral atoms with Z = 70-100.
    Kahane S
    Acta Crystallogr A; 1999 Jul; 55(Pt 4):648-651. PubMed ID: 10927275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grazing-incidence small-angle X-ray scattering in a twofold rough-interface medium: a new theoretical approach using the q-eigenwave formalism.
    Chukhovskii FN; Roshchin BS
    Acta Crystallogr A Found Adv; 2015 Nov; 71(Pt 6):612-27. PubMed ID: 26522410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Orbit Coupling Constants in Atoms and Ions of Transition Elements: Comparison of Effective Core Potentials, Model Core Potentials, and All-Electron Methods.
    Koseki S; Matsunaga N; Asada T; Schmidt MW; Gordon MS
    J Phys Chem A; 2019 Mar; 123(12):2325-2339. PubMed ID: 30817150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic linear response wave functions and dynamic scattering tensor for the ns1/2 states in hydrogenlike atoms.
    Yakhontov V
    Phys Rev Lett; 2003 Aug; 91(9):093001. PubMed ID: 14525178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in
    Kleemiss F; Peyerimhoff N; Bodensteiner M
    J Appl Crystallogr; 2024 Feb; 57(Pt 1):161-174. PubMed ID: 38322726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption correction A* for cylindrical and spherical samples with extended range and high accuracy calculated by the Thorkildsen and Larsen analytical method.
    Hu HC; Yang C; Zhao K
    Acta Crystallogr A; 2012 Nov; 68(Pt 6):778-9. PubMed ID: 23075619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relativistic Gaussian functions for atoms by fitting numerical results with adaptive nonlinear least-square algorithm.
    Hu A; Otto P; Ladik J
    J Comput Chem; 1999 May; 20(7):655-664. PubMed ID: 34376034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model.
    Volkov A; King HF; Coppens P; Farrugia LJ
    Acta Crystallogr A; 2006 Sep; 62(Pt 5):400-8. PubMed ID: 16926487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron atomic scattering factors, Debye-Waller factors and the optical potential for high-energy electron diffraction.
    Peng LM
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):199-207. PubMed ID: 16076864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On 'globbicity' of low-resolution protein structures.
    Guo DY; Blessing RH; Langs DA; Smith GD
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):230-7. PubMed ID: 10089414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical bonding in energetic materials: beta-NTO.
    Zhurova EA; Pinkerton AA
    Acta Crystallogr B; 2001 Jun; 57(Pt 3):359-65. PubMed ID: 11373395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.