These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11681361)

  • 1. Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals. II. Applications and numerical values for quartz.
    Dulmet B; Bourquin R; Bigler E; Ballandras S
    J Acoust Soc Am; 2001 Oct; 110(4):1800-7. PubMed ID: 11681361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals. I. Theory.
    Dulmet B; Bourquin R
    J Acoust Soc Am; 2001 Oct; 110(4):1792-9. PubMed ID: 11681360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Nonlinear Model for Prediction of Frequency-Temperature Behavior of SAW Devices for Nanosensor Applications.
    Chen Z; Zhang Q; Li C; Fu S; Qiu X; Wang X; Wu H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.
    Zhang H; Kosinski JA; Zuo L
    Ultrasonics; 2016 Sep; 71():189-193. PubMed ID: 27392205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.
    Pereira da Cunha M; Malocha DC; Adler EL; Casey KJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1291-9. PubMed ID: 12243580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.
    Zu H; Wu H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):486-505. PubMed ID: 26886982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate measurements of the acoustical physical constants of synthetic alpha-quartz for SAW devices.
    Kushibiki J; Takanaga I; Nishiyama S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jan; 49(1):125-35. PubMed ID: 11833885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium tetraborate transducers.
    Ballato A; Kosinski JA; Lukaszek TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):62-6. PubMed ID: 18267558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic surface waves in crystals--part 2: cross-check of two full-wave numerical modeling methods.
    Komatitsch D; Carcione JM; Cavallini F; Favretto-Cristini N
    Ultrasonics; 2011 Dec; 51(8):878-89. PubMed ID: 21652053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures.
    Herrmann F; Weihnacht M; Buttgenbach S
    Ultrasonics; 1999 Jun; 37(5):335-41. PubMed ID: 10499804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.
    Sturtevant BT; Davulis PM; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):788-97. PubMed ID: 19406707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric and acoustic properties of potassium titanyl phosphate (KTP) and its isomorphs.
    Chu DT; Bierlein JD; Hunsperger RG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):683-7. PubMed ID: 18267682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900°C.
    Davulis PM; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):824-33. PubMed ID: 23549543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brillouin spectroscopy, calculated elastic and bond properties of GaAsO4.
    Bhalerao GM; Cambon O; Haines J; Levelut C; Mermet A; Sirotkin S; Ménaert B; Debray J; Baraille I; Darrigan C; Rérat M
    Inorg Chem; 2010 Oct; 49(20):9470-8. PubMed ID: 20845921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method of determining acoustical physical constants for piezoelectric materials by line-focus-beam acoustic microscopy.
    Takanaga I; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):893-904. PubMed ID: 12152943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the sonic properties of a Nigerian quartz for ultrasonic transducer.
    Nwadike UI; Agwu KK; Eze CU; Kani D; Agu G; Enwereuzo E; Obika M; Umoh E; Ufomba E
    J Xray Sci Technol; 2018; 26(3):499-508. PubMed ID: 29562583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of metal thickness on phase velocity and thermal sensitivity of SAW devices.
    Henry-Briot E; Ballandras S; Marianneau G; Martin G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):538-46. PubMed ID: 11370368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.
    Darinskii AN; Weihnacht M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):904-10. PubMed ID: 16048191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of contributions of nonlinear material constants to stress-induced velocity shifts of quartz and langasite surface acoustic wave resonators.
    Zhang H; Kosinski J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):975-85. PubMed ID: 23661132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal sensitivity of elastic coefficients of langasite and langatate.
    Bourquin R; Dulmet B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2079-85. PubMed ID: 19942496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.