These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11681383)

  • 41. Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli.
    Nelken I; Young ED
    J Neurophysiol; 1994 Jun; 71(6):2446-62. PubMed ID: 7931527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
    Salt AN; Lichtenhan JT; Gill RM; Hartsock JJ
    J Acoust Soc Am; 2013 Mar; 133(3):1561-71. PubMed ID: 23464026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Group delay measurement from spiral ganglion cells in the basal turn of the guinea pig cochlea.
    Gummer AW; Johnstone BM
    J Acoust Soc Am; 1984 Nov; 76(5):1388-400. PubMed ID: 6096431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist.
    McMahon CM; Patuzzi RB; Gibson WP; Sanli H
    Ear Hear; 2008 Jun; 29(3):314-25. PubMed ID: 18344874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials.
    Zhang SY; Robertson D; Yates G; Everett A
    J Neurophysiol; 1999 Dec; 82(6):3307-15. PubMed ID: 10601462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique.
    Sellick PM; Patuzzi R; Johnstone BM
    J Acoust Soc Am; 1982 Jul; 72(1):131-41. PubMed ID: 7108035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-tone suppression in cochlear mechanics.
    Cooper NP
    J Acoust Soc Am; 1996 May; 99(5):3087-98. PubMed ID: 8642119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of electrophonics in electroacoustic stimulation of the guinea pig cochlea.
    Stronks HC; Versnel H; Prijs VF; de Groot JC; Grolman W; Klis SF
    Otol Neurotol; 2013 Apr; 34(3):579-87. PubMed ID: 23449442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase-dependent audiometry with low-frequency masking revisited.
    Rahne T; Rasinski C; Neumann K
    J Neurosci Methods; 2010 May; 188(2):302-4. PubMed ID: 20171987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of low- and high-side two-tone suppression in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    Hear Res; 1990 Dec; 50(1-2):193-209. PubMed ID: 2076972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A role for purinergic receptors at the inner hair cell-afferent synapse?
    Robertson D; Paki B
    Audiol Neurootol; 2002; 7(1):62-7. PubMed ID: 11914529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An empirical bound on the compressibility of the cochlea.
    Shera CA; Zweig G
    J Acoust Soc Am; 1992 Sep; 92(3):1382-8. PubMed ID: 1401524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.