These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11681383)

  • 61. A computational model of the auditory periphery for speech and hearing research. II. Descending paths.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):343-9. PubMed ID: 8120245
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss.
    Sly DJ; Campbell L; Uschakov A; Saief ST; Lam M; O'Leary SJ
    Otol Neurotol; 2016 Oct; 37(9):1223-30. PubMed ID: 27631825
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Oto-acoustic emissions and their significance for inner ear research].
    Fritze W; Köhler W
    Laryngol Rhinol Otol (Stuttg); 1986 Nov; 65(11):600-3. PubMed ID: 3100888
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP; Rhode WS
    J Neurophysiol; 1997 Jul; 78(1):261-70. PubMed ID: 9242278
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Maximal number of pre-synaptic ribbons are formed in cochlear region corresponding to middle frequency in mice.
    Yang L; Chen D; Qu T; Ding T; Yan A; Gong P; Liu Y; Zhang J; Gong S; Yang S; Peng H; Liu K
    Acta Otolaryngol; 2018 Jan; 138(1):25-30. PubMed ID: 28949268
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Frequency variation in spontaneous sound emissions from guinea pig and human ears.
    Brown AM; Woodward S; Gaskill SA
    Eur Arch Otorhinolaryngol; 1990; 247(1):24-8. PubMed ID: 2310545
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sound coding in the auditory nerve of gerbils.
    Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J
    Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hearing shift and inner ear pathology of guinea pigs exposed to octave bands of noise centered at 63 Hz and 4 kHz.
    Wang L; Jiang W; Qian J
    Chin Med J (Engl); 1994 Jul; 107(7):500-4. PubMed ID: 7956496
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Excitation patterns in the starling cochlea: a population study of primary auditory afferents.
    Gleich O
    J Acoust Soc Am; 1994 Jan; 95(1):401-9. PubMed ID: 8120251
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements.
    Dallos P
    Hear Res; 1984 Jun; 14(3):281-91. PubMed ID: 6480514
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recent advances in cochlear physiology.
    Pickles JO
    Prog Neurobiol; 1985; 24(1):1-42. PubMed ID: 2409570
    [No Abstract]   [Full Text] [Related]  

  • 74. Best frequencies and temporal delays are similar across the low-frequency regions of the guinea pig cochlea.
    Burwood G; Hakizimana P; Nuttall AL; Fridberger A
    Sci Adv; 2022 Sep; 8(38):eabq2773. PubMed ID: 36149949
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A critique of the critical cochlea: Hopf--a bifurcation--is better than none.
    Hudspeth AJ; Jülicher F; Martin P
    J Neurophysiol; 2010 Sep; 104(3):1219-29. PubMed ID: 20538769
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An evaluation of eight computer models of mammalian inner hair-cell function.
    Hewitt MJ; Meddis R
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):904-17. PubMed ID: 1939895
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling the identification of concurrent vowels with different fundamental frequencies.
    Meddis R; Hewitt MJ
    J Acoust Soc Am; 1992 Jan; 91(1):233-45. PubMed ID: 1737874
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Audition in sciaenid fishes with different swim bladder-inner ear configurations.
    Ramcharitar JU; Higgs DM; Popper AN
    J Acoust Soc Am; 2006 Jan; 119(1):439-43. PubMed ID: 16454298
    [TBL] [Abstract][Full Text] [Related]  

  • 79. WaveNet-based approximation of a cochlear filtering and hair cell transduction model.
    Nagathil A; Bruce IC
    J Acoust Soc Am; 2023 Jul; 154(1):191-202. PubMed ID: 37436273
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Use of albino animals for auditory research.
    Bock GR; Steel KP
    Hear Res; 1984 Feb; 13(2):201-2. PubMed ID: 6715266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.