These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 11681462)
1. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function. Erny GL; Bergström ET; Goodall DM; Grieb S Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462 [TBL] [Abstract][Full Text] [Related]
2. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff-Van der Linde function. Erny GL; Bergström ET; Goodall DM J Chromatogr A; 2002 Jun; 959(1-2):229-39. PubMed ID: 12141548 [TBL] [Abstract][Full Text] [Related]
3. Determination of the correct migration time and other parameters of the Haarhoff-van der Linde function from the peak geometry characteristics. Dubský P; Dvořák M; Műllerová L; Gaš B Electrophoresis; 2015 Mar; 36(5):655-61. PubMed ID: 25475400 [TBL] [Abstract][Full Text] [Related]
4. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Le Saux T; Varenne A; Gareil P Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707 [TBL] [Abstract][Full Text] [Related]
5. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections. Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020 [TBL] [Abstract][Full Text] [Related]
6. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies. Hjertén S; Mohabbati S; Westerlund D J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984 [TBL] [Abstract][Full Text] [Related]
7. A nonlinear electrophoretic model for PeakMaster: I. mathematical model. Hruška V; Riesová M; Gaš B Electrophoresis; 2012 Mar; 33(6):923-30. PubMed ID: 22528412 [TBL] [Abstract][Full Text] [Related]
8. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Sursyakova VV; Levdansky VA; Rubaylo AI Anal Bioanal Chem; 2020 Sep; 412(23):5615-5625. PubMed ID: 32617760 [TBL] [Abstract][Full Text] [Related]
9. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2020 Jan; 41(1-2):112-115. PubMed ID: 31670400 [TBL] [Abstract][Full Text] [Related]
10. System peaks in capillary zone electrophoresis. 3. Practical rules for predicting the existence of system peaks in capillary zone electrophoresis of anions using indirect spectrophotometric detection. Macka M; Haddad PR; Gebauer P; Bocek P Electrophoresis; 1997 Oct; 18(11):1998-2007. PubMed ID: 9420159 [TBL] [Abstract][Full Text] [Related]
11. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. Dubský P; Ördögová M; Malý M; Riesová M J Chromatogr A; 2016 May; 1445():158-65. PubMed ID: 27062723 [TBL] [Abstract][Full Text] [Related]
12. Boundary values of binding constants determined by affinity capillary electrophoresis. Sursyakova VV; Rubaylo AI J Sep Sci; 2021 Nov; 44(22):4200-4203. PubMed ID: 34510741 [TBL] [Abstract][Full Text] [Related]
13. System zones in capillary zone electrophoresis. Gas B; Kenndler E Electrophoresis; 2004 Dec; 25(23-24):3901-12. PubMed ID: 15597426 [TBL] [Abstract][Full Text] [Related]
14. A new mathematical function for describing electrophoretic peaks. García-Alvarez-Coque MC; Simó-Alfonso EF; Sanchis-Mallols JM; Baeza-Baeza JJ Electrophoresis; 2005 Jun; 26(11):2076-85. PubMed ID: 15880552 [TBL] [Abstract][Full Text] [Related]
15. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Tůmová T; Monincová L; Čeřovský V; Kašička V Electrophoresis; 2016 Dec; 37(23-24):3186-3195. PubMed ID: 27757974 [TBL] [Abstract][Full Text] [Related]
16. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration. Stĕdrý M; Jaros M; Hruska V; Gas B Electrophoresis; 2004 Oct; 25(18-19):3071-9. PubMed ID: 15472980 [TBL] [Abstract][Full Text] [Related]
17. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Jaros M; Hruska V; Stedrý M; Zusková I; Gas B Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981 [TBL] [Abstract][Full Text] [Related]
18. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. Hruška V; Svobodová J; Beneš M; Gaš B J Chromatogr A; 2012 Dec; 1267():102-8. PubMed ID: 22818776 [TBL] [Abstract][Full Text] [Related]
19. Influence of theoretical and semi-empirical peak models on the efficiency calculation in chiral chromatography. Burk RJ; Wahab MF; Armstrong DW Talanta; 2024 Sep; 277():126308. PubMed ID: 38820823 [TBL] [Abstract][Full Text] [Related]
20. System effects in sample self-stacking CZE: single analyte peak splitting of salt-containing samples. Malá Z; Gebauer P; Bocek P Electrophoresis; 2009 Mar; 30(5):866-74. PubMed ID: 19197903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]