These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 11681754)

  • 21. Heterogeneous fuzzy logic networks: fundamentals and development studies.
    Pedrycz W
    IEEE Trans Neural Netw; 2004 Nov; 15(6):1466-81. PubMed ID: 15565774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Longitudinal control behaviour: Analysis and modelling based on experimental surveys in Italy and the UK.
    Pariota L; Bifulco GN; Galante F; Montella A; Brackstone M
    Accid Anal Prev; 2016 Apr; 89():74-87. PubMed ID: 26828955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing a fuzzy rule-based system using the ILFN network and Genetic Algorithm.
    Yen GG; Meesad P
    Int J Neural Syst; 2001 Oct; 11(5):427-43. PubMed ID: 11709810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dynamic neuro-fuzzy model providing bio-state estimation and prognosis prediction for wearable intelligent assistants.
    Wang Y; Winters JM
    J Neuroeng Rehabil; 2005 Jun; 2():15. PubMed ID: 15985181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A type-2 self-organizing neural fuzzy system and its FPGA implementation.
    Juang CF; Tsao YW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1537-48. PubMed ID: 19022725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.
    Lin YY; Chang JY; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):310-21. PubMed ID: 24808284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Get ready for automated driving using Virtual Reality.
    Sportillo D; Paljic A; Ojeda L
    Accid Anal Prev; 2018 Sep; 118():102-113. PubMed ID: 29890368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ARPOP: an appetitive reward-based pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia.
    Cheu EY; Quek C; Ng SK
    IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):317-29. PubMed ID: 24808510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness and driver acceptance of a semi-autonomous forward obstacle collision avoidance system.
    Itoh M; Horikome T; Inagaki T
    Appl Ergon; 2013 Sep; 44(5):756-63. PubMed ID: 23453775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Driver compliance to take-over requests with different auditory outputs in conditional automation.
    Forster Y; Naujoks F; Neukum A; Huestegge L
    Accid Anal Prev; 2017 Dec; 109():18-28. PubMed ID: 28992451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. POPFNN: A Pseudo Outer-product Based Fuzzy Neural Network.
    Quek C; Zhou RW
    Neural Netw; 1996 Dec; 9(9):1569-1581. PubMed ID: 12662554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.
    Flemisch FO; Bengler K; Bubb H; Winner H; Bruder R
    Ergonomics; 2014; 57(3):343-60. PubMed ID: 24559139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges to Human Drivers in Increasingly Automated Vehicles.
    Hancock PA; Kajaks T; Caird JK; Chignell MH; Mizobuchi S; Burns PC; Feng J; Fernie GR; Lavallière M; Noy IY; Redelmeier DA; Vrkljan BH
    Hum Factors; 2020 Mar; 62(2):310-328. PubMed ID: 32022583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.
    Merat N; Lee JD
    Hum Factors; 2012 Oct; 54(5):681-6. PubMed ID: 23156614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.
    Banks VA; Stanton NA
    Ergonomics; 2016 Nov; 59(11):1442-1452. PubMed ID: 26912405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.
    Driscoll R; Page Y; Lassarre S; Ehrlich J
    Annu Proc Assoc Adv Automot Med; 2007; 51():485-505. PubMed ID: 18184509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical information for car following: the driving by visual angle (DVA) model.
    Andersen GJ; Sauer CW
    Hum Factors; 2007 Oct; 49(5):878-96. PubMed ID: 17915604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of highly automated driving on the self-perception of drivers in the context of Conduct-by-Wire.
    Kauer M; Franz B; Maier A; Bruder R
    Ergonomics; 2015; 58(2):321-34. PubMed ID: 25343710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Driver behavior following an automatic steering intervention.
    Fricke N; Griesche S; Schieben A; Hesse T; Baumann M
    Accid Anal Prev; 2015 Oct; 83():190-6. PubMed ID: 26310799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach.
    Čubranić-Dobrodolac M; Švadlenka L; Čičević S; Dobrodolac M
    Int J Inj Contr Saf Promot; 2020 Jun; 27(2):156-167. PubMed ID: 31718434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.