BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 11682016)

  • 1. Peak heart rate decreases with increasing severity of acute hypoxia.
    Lundby C; Araoz M; van Hall G
    High Alt Med Biol; 2001; 2(3):369-76. PubMed ID: 11682016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease in peak heart rate with acute hypoxia in relation to sea level VO(2max).
    Benoit H; Busso T; Castells J; Geyssant A; Denis C
    Eur J Appl Physiol; 2003 Nov; 90(5-6):514-9. PubMed ID: 12898267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude.
    van Hall G; Calbet JA; Søndergaard H; Saltin B
    J Physiol; 2001 Nov; 536(Pt 3):963-75. PubMed ID: 11691888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters.
    Beidleman BA; Fulco CS; Muza SR; Rock PB; Staab JE; Forte VA; Brothers MD; Cymerman A
    High Alt Med Biol; 2009; 10(3):253-60. PubMed ID: 19775215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart rate response to hypoxic exercise: role of dopamine D2-receptors and effect of oxygen supplementation.
    Lundby C; Møller P; Kanstrup IL; Olsen NV
    Clin Sci (Lond); 2001 Oct; 101(4):377-83. PubMed ID: 11566075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cardiac autonomic activity during a passive 8 hour acute exposure to 5 500 m normobaric hypoxia are not related to the development of acute mountain sickness.
    Wille M; Mairer K; Gatterer H; Philippe M; Faulhaber M; Burtscher M
    Int J Sports Med; 2012 Mar; 33(3):186-91. PubMed ID: 22290324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Mountain Sickness, Hypoxia, Hypobaria and Exercise Duration each Affect Heart Rate.
    DiPasquale DM; Strangman GE; Harris NS; Muza SR
    Int J Sports Med; 2015 Jul; 36(8):609-14. PubMed ID: 25837245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High twin resemblance for sensitivity to hypoxia.
    Masschelein E; Van Thienen R; Thomis M; Hespel P
    Med Sci Sports Exerc; 2015 Jan; 47(1):74-81. PubMed ID: 24870565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia, Hypobaria, and Exercise Duration Affect Acute Mountain Sickness.
    DiPasquale DM; Strangman GE; Harris NS; Muza SR
    Aerosp Med Hum Perform; 2015 Jul; 86(7):614-9. PubMed ID: 26102141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual variation in the reduction of heart rate and performance at lactate thresholds in acute normobaric hypoxia.
    Friedmann B; Frese F; Menold E; Bärtsch P
    Int J Sports Med; 2005 Sep; 26(7):531-6. PubMed ID: 16195985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-induced cerebral deoxygenation among untrained trekkers at moderate altitudes.
    Saito S; Nishihara F; Takazawa T; Kanai M; Aso C; Shiga T; Shimada H
    Arch Environ Health; 1999; 54(4):271-6. PubMed ID: 10433186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate utilization during exercise and recovery at moderate altitude.
    Katayama K; Goto K; Ishida K; Ogita F
    Metabolism; 2010 Jul; 59(7):959-66. PubMed ID: 20036404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia.
    Roach RC; Loeppky JA; Icenogle MV
    J Appl Physiol (1985); 1996 Nov; 81(5):1908-10. PubMed ID: 8941508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hypobaria on maximal ventilation, oxygen uptake, and exercise performance during running under hypobaric normoxic conditions.
    Ogawa T; Fujii N; Kurimoto Y; Nishiyasu T
    Physiol Rep; 2019 Feb; 7(3):e14002. PubMed ID: 30756526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-intensity intermittent exercise increases pulmonary interstitial edema at altitude but not at simulated altitude.
    Edsell ME; Wimalasena YH; Malein WL; Ashdown KM; Gallagher CA; Imray CH; Wright AD; Myers SD;
    Wilderness Environ Med; 2014 Dec; 25(4):409-15. PubMed ID: 25443761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of blood haemoglobin concentration on V(O2,max) and cardiovascular function in lowlanders acclimatised to 5260 m.
    Calbet JA; Rådegran G; Boushel R; Søndergaard H; Saltin B; Wagner PD
    J Physiol; 2002 Dec; 545(2):715-28. PubMed ID: 12456846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure.
    Robach P; Déchaux M; Jarrot S; Vaysse J; Schneider JC; Mason NP; Herry JP; Gardette B; Richalet JP
    J Appl Physiol (1985); 2000 Jul; 89(1):29-37. PubMed ID: 10904032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced hyperthermia-induced cutaneous vasodilation and enhanced exercise-induced plasma water loss at simulated high altitude (3,200 m) in humans.
    Miyagawa K; Kamijo Y; Ikegawa S; Goto M; Nose H
    J Appl Physiol (1985); 2011 Jan; 110(1):157-65. PubMed ID: 21088208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners.
    Truijens MJ; Rodríguez FA; Townsend NE; Stray-Gundersen J; Gore CJ; Levine BD
    J Appl Physiol (1985); 2008 Feb; 104(2):328-37. PubMed ID: 18048583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiorespiratory Response and Power Output During Submaximal Exercise in Normobaric Versus Hypobaric Hypoxia: A Pilot Study Using a Specific Chamber that Controls Environmental Factors.
    Takezawa T; Dobashi S; Koyama K
    High Alt Med Biol; 2021 Jun; 22(2):201-208. PubMed ID: 33599547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.