BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

751 related articles for article (PubMed ID: 11682157)

  • 1. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures.
    España RA; Reis KM; Valentino RJ; Berridge CW
    J Comp Neurol; 2005 Jan; 481(2):160-78. PubMed ID: 15562511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin.
    España RA; Plahn S; Berridge CW
    Brain Res; 2002 Jul; 943(2):224-36. PubMed ID: 12101045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats.
    Thakkar MM; Ramesh V; Strecker RE; McCarley RW
    Arch Ital Biol; 2001 Apr; 139(3):313-28. PubMed ID: 11330208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration.
    España RA; Valentino RJ; Berridge CW
    Neuroscience; 2003; 121(1):201-17. PubMed ID: 12946712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orexins/hypocretins excite basal forebrain cholinergic neurones.
    Eggermann E; Serafin M; Bayer L; Machard D; Saint-Mleux B; Jones BE; Mühlethaler M
    Neuroscience; 2001; 108(2):177-81. PubMed ID: 11734353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential sensitivity to the wake-promoting actions of norepinephrine within the medial preoptic area and the substantia innominata.
    Berridge CW; O'Neill J
    Behav Neurosci; 2001 Feb; 115(1):165-74. PubMed ID: 11256440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons.
    Satoh S; Matsumura H; Nakajima T; Nakahama K; Kanbayashi T; Nishino S; Yoneda H; Shigeyoshi Y
    Eur J Neurosci; 2003 Apr; 17(8):1635-45. PubMed ID: 12752381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphetamine acts within the medial basal forebrain to initiate and maintain alert waking.
    Berridge CW; O'Neil J; Wifler K
    Neuroscience; 1999; 93(3):885-96. PubMed ID: 10473254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal theta.
    Gerashchenko D; Salin-Pascual R; Shiromani PJ
    Brain Res; 2001 Sep; 913(1):106-15. PubMed ID: 11532254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wake-promoting actions of medial basal forebrain beta2 receptor stimulation.
    Berridge CW; Stellick RL; Schmeichel BE
    Behav Neurosci; 2005 Jun; 119(3):743-51. PubMed ID: 15998195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats.
    Deurveilher S; Cumyn EM; Peers T; Rusak B; Semba K
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1328-40. PubMed ID: 18753261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain.
    Murillo-Rodriguez E; Liu M; Blanco-Centurion C; Shiromani PJ
    Eur J Neurosci; 2008 Sep; 28(6):1191-8. PubMed ID: 18783368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of orexin/hypocretin projections to basal forebrain and paraventricular thalamus by acute nicotine.
    Pasumarthi RK; Fadel J
    Brain Res Bull; 2008 Dec; 77(6):367-73. PubMed ID: 18950690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preoptic hypothalamus and basal forebrain play opposing roles in the descending modulation of sleep and wakefulness in infant rats.
    Mohns EJ; Karlsson KA; Blumberg MS
    Eur J Neurosci; 2006 Mar; 23(5):1301-10. PubMed ID: 16553791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain.
    Berridge CW; Foote SL
    J Neurosci; 1996 Nov; 16(21):6999-7009. PubMed ID: 8824336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wake-promoting actions of noradrenergic α1 - and β-receptors within the lateral hypothalamic area.
    Schmeichel BE; Berridge CW
    Eur J Neurosci; 2013 Mar; 37(6):891-900. PubMed ID: 23252935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro.
    Arrigoni E; Chamberlin NL; Saper CB; McCarley RW
    Neuroscience; 2006 Jun; 140(2):403-13. PubMed ID: 16542780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities.
    Yoshida Y; Fujiki N; Nakajima T; Ripley B; Matsumura H; Yoneda H; Mignot E; Nishino S
    Eur J Neurosci; 2001 Oct; 14(7):1075-81. PubMed ID: 11683899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.