These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 11683246)
1. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Suarez S; O'Hara P; Kazantseva M; Newcomer CE; Hopfer R; McMurray DN; Hickey AJ Pharm Res; 2001 Sep; 18(9):1315-9. PubMed ID: 11683246 [TBL] [Abstract][Full Text] [Related]
2. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. Suarez S; O'Hara P; Kazantseva M; Newcomer CE; Hopfer R; McMurray DN; Hickey AJ J Antimicrob Chemother; 2001 Sep; 48(3):431-4. PubMed ID: 11533012 [TBL] [Abstract][Full Text] [Related]
3. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. Pandey R; Sharma A; Zahoor A; Sharma S; Khuller GK; Prasad B J Antimicrob Chemother; 2003 Dec; 52(6):981-6. PubMed ID: 14613962 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. Garcia-Contreras L; Sethuraman V; Kazantseva M; Godfrey V; Hickey AJ J Antimicrob Chemother; 2006 Nov; 58(5):980-6. PubMed ID: 16971416 [TBL] [Abstract][Full Text] [Related]
5. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. O'Hara P; Hickey AJ Pharm Res; 2000 Aug; 17(8):955-61. PubMed ID: 11028941 [TBL] [Abstract][Full Text] [Related]
6. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. Ohashi K; Kabasawa T; Ozeki T; Okada H J Control Release; 2009 Apr; 135(1):19-24. PubMed ID: 19121349 [TBL] [Abstract][Full Text] [Related]
7. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Manca ML; Mourtas S; Dracopoulos V; Fadda AM; Antimisiaris SG Colloids Surf B Biointerfaces; 2008 Apr; 62(2):220-31. PubMed ID: 18023977 [TBL] [Abstract][Full Text] [Related]
8. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. Hirota K; Hasegawa T; Nakajima T; Inagawa H; Kohchi C; Soma G; Makino K; Terada H J Control Release; 2010 Mar; 142(3):339-46. PubMed ID: 19951729 [TBL] [Abstract][Full Text] [Related]
9. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. Dutt M; Khuller GK J Antimicrob Chemother; 2001 Jun; 47(6):829-35. PubMed ID: 11389115 [TBL] [Abstract][Full Text] [Related]
10. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. Sethuraman VV; Hickey AJ AAPS PharmSciTech; 2002; 3(4):E28. PubMed ID: 12916922 [TBL] [Abstract][Full Text] [Related]
11. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Hakkimane SS; Shenoy VP; Gaonkar SL; Bairy I; Guru BR Int J Nanomedicine; 2018; 13():4303-4318. PubMed ID: 30087562 [TBL] [Abstract][Full Text] [Related]
13. Distribution and deposition of respirable PLGA microspheres in lung alveoli. Hirota K; Kawamoto T; Nakajima T; Makino K; Terada H Colloids Surf B Biointerfaces; 2013 May; 105():92-7. PubMed ID: 23384687 [TBL] [Abstract][Full Text] [Related]
14. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages. Tukulula M; Gouveia L; Paixao P; Hayeshi R; Naicker B; Dube A Pharm Res; 2018 Mar; 35(6):111. PubMed ID: 29600438 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs. Garcia Contreras L; Sung J; Ibrahim M; Elbert K; Edwards D; Hickey A Mol Pharm; 2015 Aug; 12(8):2642-50. PubMed ID: 25942002 [TBL] [Abstract][Full Text] [Related]
17. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Makino K; Nakajima T; Shikamura M; Ito F; Ando S; Kochi C; Inagawa H; Soma G; Terada H Colloids Surf B Biointerfaces; 2004 Jul; 36(1):35-42. PubMed ID: 15261021 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic efficacy of Poly(DL-lactide-Co-Glycolide)-encapsulated antitubercular drugs against Mycobacterium tuberculosis infection induced in mice. Dutt M; Khuller GK Antimicrob Agents Chemother; 2001 Jan; 45(1):363-6. PubMed ID: 11121000 [TBL] [Abstract][Full Text] [Related]
19. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Doan TV; Couet W; Olivier JC Int J Pharm; 2011 Jul; 414(1-2):112-7. PubMed ID: 21596123 [TBL] [Abstract][Full Text] [Related]
20. Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Doan TV; Olivier JC Int J Pharm; 2009 Dec; 382(1-2):61-6. PubMed ID: 19682562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]