These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11683325)

  • 1. High evolutionary rates in nuclear genes of squamates.
    Hughes S; Mouchiroud D
    J Mol Evol; 2001 Jul; 53(1):70-6. PubMed ID: 11683325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular phylogeny of reptiles.
    Hedges SB; Poling LL
    Science; 1999 Feb; 283(5404):998-1001. PubMed ID: 9974396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic analysis of reptilian hemoglobins: trees, rates, and divergences.
    Gorr TA; Mable BK; Kleinschmidt T
    J Mol Evol; 1998 Oct; 47(4):471-85. PubMed ID: 9767692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles.
    Eo SH; DeWoody JA
    Proc Biol Sci; 2010 Dec; 277(1700):3587-92. PubMed ID: 20610427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different genomic evolutionary rates in the various reptile lineages.
    Olmo E; Capriglione T; Odierna G
    Gene; 2002 Aug; 295(2):317-21. PubMed ID: 12354667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes.
    Cao Y; Sorenson MD; Kumazawa Y; Mindell DP; Hasegawa M
    Gene; 2000 Dec; 259(1-2):139-48. PubMed ID: 11163971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
    Vidal N; Hedges SB
    C R Biol; 2005; 328(10-11):1000-8. PubMed ID: 16286089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping.
    Uno Y; Nishida C; Tarui H; Ishishita S; Takagi C; Nishimura O; Ishijima J; Ota H; Kosaka A; Matsubara K; Murakami Y; Kuratani S; Ueno N; Agata K; Matsuda Y
    PLoS One; 2012; 7(12):e53027. PubMed ID: 23300852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB; Eckhart L; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers.
    Kumazawa Y; Nishida M
    Mol Biol Evol; 1995 Sep; 12(5):759-72. PubMed ID: 7476123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular structure of sauropsid β-keratins from tuatara (Sphenodon punctatus).
    Parry DAD; Fraser RDB; Alibardi L; Rutherford KM; Gemmell N
    J Struct Biol; 2019 Jul; 207(1):21-28. PubMed ID: 30978459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the reptile CD1 genes: evolutionary implications.
    Yang Z; Wang C; Wang T; Bai J; Zhao Y; Liu X; Ma Q; Wu X; Guo Y; Zhao Y; Ren L
    Immunogenetics; 2015 Jun; 67(5-6):337-46. PubMed ID: 25921705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.
    Tzika AC; Ullate-Agote A; Grbic D; Milinkovitch MC
    Genome Biol Evol; 2015 Jul; 7(6):1827-41. PubMed ID: 26133641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids.
    Kuraku S; Ishijima J; Nishida-Umehara C; Agata K; Kuratani S; Matsuda Y
    Chromosome Res; 2006; 14(2):187-202. PubMed ID: 16544192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rampant horizontal transfer of SPIN transposons in squamate reptiles.
    Gilbert C; Hernandez SS; Flores-Benabib J; Smith EN; Feschotte C
    Mol Biol Evol; 2012 Feb; 29(2):503-15. PubMed ID: 21771716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary position of turtles revised.
    Zardoya R; Meyer A
    Naturwissenschaften; 2001 May; 88(5):193-200. PubMed ID: 11482432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of natriuretic peptides from the heart of reptiles: loss of ANP in diapsid reptiles and birds.
    Trajanovska S; Donald JA
    Gen Comp Endocrinol; 2008 Apr; 156(2):339-46. PubMed ID: 18295764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional patterns in reptilian genomes.
    Hughes S; Clay O; Bernardi G
    Gene; 2002 Aug; 295(2):323-9. PubMed ID: 12354668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of molecular evolution vary in vertebrates for insulin-like growth factor-1 (IGF-1), a pleiotropic locus that regulates life history traits.
    Sparkman AM; Schwartz TS; Madden JA; Boyken SE; Ford NB; Serb JM; Bronikowski AM
    Gen Comp Endocrinol; 2012 Aug; 178(1):164-73. PubMed ID: 22569170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics.
    Pereira SL; Baker AJ
    BMC Evol Biol; 2004 Jun; 4():17. PubMed ID: 15219233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.