BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11683461)

  • 1. Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum.
    Sándor E; Szentirmai A; Paul GC; Thomas CR; Pócsi I; Karaffa L
    Can J Microbiol; 2001 Sep; 47(9):801-6. PubMed ID: 11683461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35.
    Shin HY; Lee JY; Choi HS; Lee JH; Kim SW
    J Microbiol; 2011 Oct; 49(5):753-8. PubMed ID: 22068491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium.
    Vicik SM; Fedor AJ; Swartz RW
    Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil.
    Li J; Yang Y; Chu J; Huang M; Li L; Zhang X; Wang Y; Zhuang Y; Zhang S
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1119-29. PubMed ID: 20571830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and kinetics studies on cephalosporin C production by Cephalosporium acremonium M25 in a 30-l bioreactor using a mixture of inocula.
    Kim JH; Lim JS; Kim CH; Kim SW
    Lett Appl Microbiol; 2005; 40(5):307-11. PubMed ID: 15836730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum.
    Karaffa L; Sándor E; Kozma J; Kubicek CP; Szentirmai A
    Appl Microbiol Biotechnol; 1999 May; 51(5):633-8. PubMed ID: 10390822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35.
    Lee JH; Yoo HY; Yang X; Kim DS; Lee JH; Lee SK; Han SO; Kim SW
    Lett Appl Microbiol; 2017 Jan; 64(1):66-72. PubMed ID: 27736007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium.
    Kim BM; Kim SW; Yang DR
    Biotechnol Lett; 2003 Apr; 25(8):611-6. PubMed ID: 12882154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum.
    Li H; Hu P; Wang Y; Pan Y; Liu G
    Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum.
    Liu Y; Gong G; Xie L; Yuan N; Zhu C; Zhu B; Hu Y
    Mol Biotechnol; 2010 Feb; 44(2):101-9. PubMed ID: 19787461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum: Optimization of process parameters through statistical experimental designs.
    Lotfy WA
    Bioresour Technol; 2007 Dec; 98(18):3491-8. PubMed ID: 17222554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of the production of cephalosporin C by Acremonium chrysogenum.
    Tollnick C; Seidel G; Beyer M; Schügerl K
    Adv Biochem Eng Biotechnol; 2004; 86():1-45. PubMed ID: 15088762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium.
    Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K
    J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum.
    López-Calleja AC; Cuadra T; Barrios-González J; Fierro F; Fernández FJ
    J Mol Microbiol Biotechnol; 2012; 22(2):126-34. PubMed ID: 22678076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arthrospore-related gene Acaxl2 is involved in cephalosporin C production in industrial Acremonium chrysogenum by the regulatory factors AcFKH1 and CPCR1.
    Xu Y; Liu L; Chen Z; Tian X; Chu J
    J Biotechnol; 2022 Mar; 347():26-39. PubMed ID: 34954288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus.
    Sándor E; Pusztahelyi T; Karaffa L; Karányi Z; Pócsi I; Biró S; Szentirmai A; Pócsi I
    FEMS Microbiol Lett; 1998 Jul; 164(2):231-6. PubMed ID: 9742010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum.
    Wang H; Pan Y; Hu P; Zhu Y; Li J; Jiang X; Liu G
    Fungal Genet Biol; 2014 Aug; 69():65-74. PubMed ID: 24963594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose.
    Küenzi M
    Arch Microbiol; 1980 Nov; 128(1):78-83. PubMed ID: 7192969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum.
    Zhgun A; Dumina M; Valiakhmetov A; Eldarov M
    PLoS One; 2020; 15(8):e0238452. PubMed ID: 32866191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.