BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11683646)

  • 1. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase.
    Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ
    Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.
    Kapetanaki SM; Field SJ; Hughes RJ; Watmough NJ; Liebl U; Vos MH
    Biochim Biophys Acta; 2008; 1777(7-8):919-24. PubMed ID: 18420024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton and electron pathways in the bacterial nitric oxide reductase.
    Hendriks JH; Jasaitis A; Saraste M; Verkhovsky MI
    Biochemistry; 2002 Feb; 41(7):2331-40. PubMed ID: 11841226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved resonance Raman and time-resolved step-scan FTIR studies of nitric oxide reductase from Paracoccus denitrificans: comparison of the heme b3-FeB site to that of the heme-CuB in oxidases.
    Pinakoulaki E; Varotsis C
    Biochemistry; 2003 Dec; 42(50):14856-61. PubMed ID: 14674760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen.
    Flock U; Watmough NJ; Adelroth P
    Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NO binding and dynamics in reduced heme-copper oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus.
    Pilet E; Nitschke W; Rappaport F; Soulimane T; Lambry JC; Liebl U; Vos MH
    Biochemistry; 2004 Nov; 43(44):14118-27. PubMed ID: 15518562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer to the active site of the bacterial nitric oxide reductase is controlled by ligand binding to heme b₃.
    Field SJ; Roldan MD; Marritt SJ; Butt JN; Richardson DJ; Watmough NJ
    Biochim Biophys Acta; 2011 Apr; 1807(4):451-7. PubMed ID: 21296048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase.
    Pinakoulaki E; Varotsis C
    J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.
    Grönberg KL; Watmough NJ; Thomson AJ; Richardson DJ; Field SJ
    J Biol Chem; 2004 Apr; 279(17):17120-5. PubMed ID: 14766741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of a soluble domain of subunit C of a bacterial nitric oxide reductase.
    Oubrie A; Gemeinhardt S; Field S; Marritt S; Thomson AJ; Saraste M; Richardson DJ
    Biochemistry; 2002 Sep; 41(35):10858-65. PubMed ID: 12196025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MCD and EPR of the heme centers of nitric oxide reductase from Pseudomonas stutzeri: evidence that the enzyme is structurally related to the heme-copper oxidases.
    Cheesman MR; Zumft WG; Thomson AJ
    Biochemistry; 1998 Mar; 37(11):3994-4000. PubMed ID: 9521721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome bo from Escherichia coli: identification of haem ligands and reaction of the reduced enzyme with carbon monoxide.
    Cheesman MR; Watmough NJ; Pires CA; Turner R; Brittain T; Gennis RB; Greenwood C; Thomson AJ
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):709-18. PubMed ID: 8382047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active site of the bacterial nitric oxide reductase is a dinuclear iron center.
    Hendriks J; Warne A; Gohlke U; Haltia T; Ludovici C; Lübben M; Saraste M
    Biochemistry; 1998 Sep; 37(38):13102-9. PubMed ID: 9748316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of nitric oxide in the active site of reduced cytochrome c oxidase aa3.
    Vos MH; Lipowski G; Lambry JC; Martin JL; Liebl U
    Biochemistry; 2001 Jul; 40(26):7806-11. PubMed ID: 11425307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected weak magnetic exchange coupling between haem and non-haem iron in the catalytic site of nitric oxide reductase (NorBC) from Paracoccus denitrificans1.
    Van Wonderen JH; Oganesyan VS; Watmough NJ; Richardson DJ; Thomson AJ; Cheesman MR
    Biochem J; 2013 May; 451(3):389-94. PubMed ID: 23421449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: a combined flash photolysis and X-ray crystallography study.
    Sjögren T; Svensson-Ek M; Hajdu J; Brzezinski P
    Biochemistry; 2000 Sep; 39(36):10967-74. PubMed ID: 10998233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathway of O₂to the active site in heme-copper oxidases.
    Einarsdóttir O; McDonald W; Funatogawa C; Szundi I; Woodruff WH; Dyer RB
    Biochim Biophys Acta; 2015 Jan; 1847(1):109-18. PubMed ID: 24998308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.