BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11683866)

  • 1. Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ.
    García-Junco M; De Olmedo E; Ortega-Calvo JJ
    Environ Microbiol; 2001 Sep; 3(9):561-9. PubMed ID: 11683866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids.
    Garcia-Junco M; Gomez-Lahoz C; Niqui-Arroyo JL; Ortega-Calvo JJ
    Environ Sci Technol; 2003 Jul; 37(13):2988-96. PubMed ID: 12875405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria.
    Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M
    J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.
    Chang JS; Cha DK; Radosevich M; Jin Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037.
    Tecon R; van der Meer JR
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1131-9. PubMed ID: 19730847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene.
    Zhao Z; Selvam A; Wong JW
    Bioresour Technol; 2011 Mar; 102(5):3999-4007. PubMed ID: 21208798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism.
    Bouchez M; Blanchet D; Vandecasteele JP
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):952-60. PubMed ID: 7576563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing biodegradation of phenanthrene dissolved in nonaqueous-phase liquids.
    Birman I; Alexander M
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):267-72. PubMed ID: 8920200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems.
    Ahmad Z; Zhang X; Imran M; Zhong H; Andleeb S; Zulekha R; Liu G; Ahmad I; Coulon F
    Ecotoxicol Environ Saf; 2021 Jan; 207():111514. PubMed ID: 33254394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.
    Gottfried A; Singhal N; Elliot R; Swift S
    Appl Microbiol Biotechnol; 2010 May; 86(5):1563-71. PubMed ID: 20146061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of surfactants and slurrying to enhance the biodegradation in soil of compounds initially dissolved in nonaqueous-phase liquids.
    Fu MH; Alexander M
    Appl Microbiol Biotechnol; 1995 Jul; 43(3):551-8. PubMed ID: 7632403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.
    Shin KH; Ahn Y; Kim KW
    Environ Toxicol Chem; 2005 Nov; 24(11):2768-74. PubMed ID: 16398112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E.
    Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ
    Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815.
    Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM
    Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6.
    Ma Z; Liu J; Dick RP; Li H; Shen D; Gao Y; Waigi MG; Ling W
    Environ Pollut; 2018 Sep; 240():359-367. PubMed ID: 29751332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.