BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11683910)

  • 21. A clock shock: mouse CLOCK is not required for circadian oscillator function.
    Debruyne JP; Noton E; Lambert CM; Maywood ES; Weaver DR; Reppert SM
    Neuron; 2006 May; 50(3):465-77. PubMed ID: 16675400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of Clock in the plasticity of circadian entrainment.
    Udo R; Hamada T; Horikawa K; Iwahana E; Miyakawa K; Otsuka K; Shibata S
    Biochem Biophys Res Commun; 2004 Jun; 318(4):893-8. PubMed ID: 15147955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.
    Park N; Kim HD; Cheon S; Row H; Lee J; Han DH; Cho S; Kim K
    PLoS One; 2015; 10(9):e0138661. PubMed ID: 26394143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordinated transcription of key pathways in the mouse by the circadian clock.
    Panda S; Antoch MP; Miller BH; Su AI; Schook AB; Straume M; Schultz PG; Kay SA; Takahashi JS; Hogenesch JB
    Cell; 2002 May; 109(3):307-20. PubMed ID: 12015981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase.
    Abe H; Honma S; Ohtsu H; Honma K
    Brain Res Mol Brain Res; 2004 May; 124(2):178-87. PubMed ID: 15135226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo monitoring of circadian timing in freely moving mice.
    Nakamura W; Yamazaki S; Nakamura TJ; Shirakawa T; Block GD; Takumi T
    Curr Biol; 2008 Mar; 18(5):381-5. PubMed ID: 18334203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential responses of circadian Per2 expression rhythms in discrete brain areas to daily injection of methamphetamine and restricted feeding in rats.
    Natsubori A; Honma K; Honma S
    Eur J Neurosci; 2013 Jan; 37(2):251-8. PubMed ID: 23106436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The circadian clock: a manager of biochemical processes within the organism.
    Holzberg D; Albrecht U
    J Neuroendocrinol; 2003 Apr; 15(4):339-43. PubMed ID: 12622831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constant light housing during nursing causes human DSPS (delayed sleep phase syndrome) behaviour in Clock-mutant mice.
    Wakatsuki Y; Kudo T; Shibata S
    Eur J Neurosci; 2007 Apr; 25(8):2413-24. PubMed ID: 17445238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice.
    Kolker DE; Vitaterna MH; Fruechte EM; Takahashi JS; Turek FW
    Neurobiol Aging; 2004 Apr; 25(4):517-23. PubMed ID: 15013573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of altered Clock gene expression on the pacemaker properties of SCN2.2 cells and oscillatory properties of NIH/3T3 cells.
    Allen GC; Farnell Y; Bell-Pedersen D; Cassone VM; Earnest DJ
    Neuroscience; 2004; 127(4):989-99. PubMed ID: 15312911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine.
    Honma K; Honma S; Hiroshige T
    Physiol Behav; 1987; 40(6):767-74. PubMed ID: 3313452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development.
    Kováciková Z; Sládek M; Bendová Z; Illnerová H; Sumová A
    J Biol Rhythms; 2006 Apr; 21(2):140-8. PubMed ID: 16603678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Restoration of self-sustained circadian rhythmicity by the mutant clock allele in mice in constant illumination.
    Spoelstra K; Oklejewicz M; Daan S
    J Biol Rhythms; 2002 Dec; 17(6):520-5. PubMed ID: 12465885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus.
    Moriyama Y; Sakamoto T; Karpova SG; Matsumoto A; Noji S; Tomioka K
    J Biol Rhythms; 2008 Aug; 23(4):308-18. PubMed ID: 18663238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background.
    Oishi K; Miyazaki K; Ishida N
    Biochem Biophys Res Commun; 2002 Oct; 298(2):198-202. PubMed ID: 12387815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Clock Gene Rev-Erbα Regulates Methamphetamine Actions on Circadian Timekeeping in the Mouse Brain.
    Salaberry NL; Mateo M; Mendoza J
    Mol Neurobiol; 2017 Sep; 54(7):5327-5334. PubMed ID: 27581301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.