These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 11684693)
1. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. Fernandez J; Yaman I; Merrick WC; Koromilas A; Wek RC; Sood R; Hensold J; Hatzoglou M J Biol Chem; 2002 Jan; 277(3):2050-8. PubMed ID: 11684693 [TBL] [Abstract][Full Text] [Related]
2. An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation. Lee YY; Cevallos RC; Jan E J Biol Chem; 2009 Mar; 284(11):6661-73. PubMed ID: 19131336 [TBL] [Abstract][Full Text] [Related]
3. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Yaman I; Fernandez J; Liu H; Caprara M; Komar AA; Koromilas AE; Zhou L; Snider MD; Scheuner D; Kaufman RJ; Hatzoglou M Cell; 2003 May; 113(4):519-31. PubMed ID: 12757712 [TBL] [Abstract][Full Text] [Related]
4. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. Gaccioli F; Huang CC; Wang C; Bevilacqua E; Franchi-Gazzola R; Gazzola GC; Bussolati O; Snider MD; Hatzoglou M J Biol Chem; 2006 Jun; 281(26):17929-40. PubMed ID: 16621798 [TBL] [Abstract][Full Text] [Related]
5. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. Fernandez J; Bode B; Koromilas A; Diehl JA; Krukovets I; Snider MD; Hatzoglou M J Biol Chem; 2002 Apr; 277(14):11780-7. PubMed ID: 11781318 [TBL] [Abstract][Full Text] [Related]
6. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. Fernandez J; Yaman I; Sarnow P; Snider MD; Hatzoglou M J Biol Chem; 2002 May; 277(21):19198-205. PubMed ID: 11877448 [TBL] [Abstract][Full Text] [Related]
7. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. Fernandez J; Yaman I; Mishra R; Merrick WC; Snider MD; Lamers WH; Hatzoglou M J Biol Chem; 2001 Apr; 276(15):12285-91. PubMed ID: 11114306 [TBL] [Abstract][Full Text] [Related]
8. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Hinnebusch AG Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812 [TBL] [Abstract][Full Text] [Related]
9. A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions. Sundaram A; Grant CM RNA; 2014 Apr; 20(4):559-67. PubMed ID: 24570481 [TBL] [Abstract][Full Text] [Related]
10. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Sood R; Porter AC; Olsen DA; Cavener DR; Wek RC Genetics; 2000 Feb; 154(2):787-801. PubMed ID: 10655230 [TBL] [Abstract][Full Text] [Related]
11. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Fernandez J; Yaman I; Huang C; Liu H; Lopez AB; Komar AA; Caprara MG; Merrick WC; Snider MD; Kaufman RJ; Lamers WH; Hatzoglou M Mol Cell; 2005 Feb; 17(3):405-16. PubMed ID: 15694341 [TBL] [Abstract][Full Text] [Related]
12. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Rolfes RJ; Hinnebusch AG Mol Cell Biol; 1993 Aug; 13(8):5099-111. PubMed ID: 8336737 [TBL] [Abstract][Full Text] [Related]
13. Translation inhibitory elements from Alghoul F; Laure S; Eriani G; Martin F Elife; 2021 Jun; 10():. PubMed ID: 34076576 [TBL] [Abstract][Full Text] [Related]
14. Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response. Chan CP; Kok KH; Tang HM; Wong CM; Jin DY Biochim Biophys Acta; 2013 Oct; 1833(10):2165-75. PubMed ID: 23665047 [TBL] [Abstract][Full Text] [Related]
15. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. Gaba A; Wang Z; Krishnamoorthy T; Hinnebusch AG; Sachs MS EMBO J; 2001 Nov; 20(22):6453-63. PubMed ID: 11707416 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress. Fernandez J; Lopez AB; Wang C; Mishra R; Zhou L; Yaman I; Snider MD; Hatzoglou M J Biol Chem; 2003 Dec; 278(50):50000-9. PubMed ID: 14523001 [TBL] [Abstract][Full Text] [Related]
17. Regulation of translation initiation by amino acids in eukaryotic cells. Kimball SR Prog Mol Subcell Biol; 2001; 26():155-84. PubMed ID: 11575165 [TBL] [Abstract][Full Text] [Related]
18. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. Kubota H; Obata T; Ota K; Sasaki T; Ito T J Biol Chem; 2003 Jun; 278(23):20457-60. PubMed ID: 12676950 [TBL] [Abstract][Full Text] [Related]
19. Stress-induced translation of ATF5 mRNA is regulated by the 5'-untranslated region. Watatani Y; Ichikawa K; Nakanishi N; Fujimoto M; Takeda H; Kimura N; Hirose H; Takahashi S; Takahashi Y J Biol Chem; 2008 Feb; 283(5):2543-53. PubMed ID: 18055463 [TBL] [Abstract][Full Text] [Related]