These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 11684975)
21. [Venous return disturbances in chronic pulmonary disease: a study using pulsed Doppler echocardiography]. Kobayashi S; Izumi S; Toda H; Ohta T; Ochi H; Matsuno Y; Murakami R; Morioka S; Moriyama K J Cardiol; 1991; 21(4):1009-15. PubMed ID: 1844422 [TBL] [Abstract][Full Text] [Related]
22. Transesophageal Echocardiographic Measurements of the Superior Vena Cava for Predicting Fluid Responsiveness in Patients Undergoing Invasive Positive Pressure Ventilation. Cheng Z; Yang QQ; Zhu P; Feng JY; Zhang XB; Zhao ZB J Ultrasound Med; 2019 Jun; 38(6):1519-1525. PubMed ID: 30298577 [TBL] [Abstract][Full Text] [Related]
23. Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Bouferrache K; Amiel JB; Chimot L; Caille V; Charron C; Vignon P; Vieillard-Baron A Crit Care Med; 2012 Oct; 40(10):2821-7. PubMed ID: 22878678 [TBL] [Abstract][Full Text] [Related]
24. Cyclic appearance of left ventricular outflow tract dynamic obstruction during mechanical ventilation: evidence for a preload dependent phenomenon. Canivet JL; Lancellotti P; Radermecker M; Damas P J Intensive Care Med; 2008; 23(4):281-4. PubMed ID: 18508836 [TBL] [Abstract][Full Text] [Related]
25. Migration of an endovascular stent from superior vena cava to the right ventricular outflow tract in a patient with superior vena cava syndrome. Poludasu SS; Vladutiu P; Lazar J Angiology; 2008; 59(1):114-6. PubMed ID: 18319233 [TBL] [Abstract][Full Text] [Related]
26. The relationship between superior vena cava diameter and collapsibility and central venous pressure. Cowie BS; Kluger R; Rex S; Missant C Anaesth Intensive Care; 2015 May; 43(3):357-60. PubMed ID: 25943610 [TBL] [Abstract][Full Text] [Related]
27. Physiological rationale for a bidirectional cavopulmonary shunt. A versatile complement to the Fontan principle. Hopkins RA; Armstrong BE; Serwer GA; Peterson RJ; Oldham HN J Thorac Cardiovasc Surg; 1985 Sep; 90(3):391-8. PubMed ID: 4033175 [TBL] [Abstract][Full Text] [Related]
28. [The effects of different tidal volume ventilation on right ventricular function in critical respiratory failure patients]. Liu LX; Wu JQ; Wu QY; Zhang Q; Yu B; Ge SM; Huo Y; Wang XT; Chao YG; Hu ZJ; Zhonghua Nei Ke Za Zhi; 2017 Jun; 56(6):419-426. PubMed ID: 28592041 [No Abstract] [Full Text] [Related]
29. Pulmonary vascular resistance versus pulmonary artery pressure for predicting right ventricular remodeling and functional tricuspid regurgitation. Gual-Capllonch F; Teis A; Ferrer E; Núñez J; Vallejo N; Juncà G; López-Ayerbe J; Lupón J; Bayes-Genis A Echocardiography; 2018 Nov; 35(11):1736-1745. PubMed ID: 30136745 [TBL] [Abstract][Full Text] [Related]
30. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Cullen S; Shore D; Redington A Circulation; 1995 Mar; 91(6):1782-9. PubMed ID: 7882488 [TBL] [Abstract][Full Text] [Related]
31. Acute hemodynamic changes of pressure-controlled inverse ratio ventilation in the adult respiratory distress syndrome. A transesophageal echocardiographic and Doppler study. Poelaert JI; Visser CA; Everaert JA; Koolen JJ; Colardyn FA Chest; 1993 Jul; 104(1):214-9. PubMed ID: 8325073 [TBL] [Abstract][Full Text] [Related]
32. Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients. Vignon P; Repessé X; Bégot E; Léger J; Jacob C; Bouferrache K; Slama M; Prat G; Vieillard-Baron A Am J Respir Crit Care Med; 2017 Apr; 195(8):1022-1032. PubMed ID: 27653798 [TBL] [Abstract][Full Text] [Related]
33. Caudal vena cava measurements and fluid responsiveness in hospitalized cats with compromised hemodynamics and tissue hypoperfusion. Donati PA; Tunesi M; Araos J J Vet Emerg Crit Care (San Antonio); 2023 Jan; 33(1):29-37. PubMed ID: 36537869 [TBL] [Abstract][Full Text] [Related]
34. Hemodynamic changes during weaning from nasal continuous positive airway pressure. Abdel-Hady H; Matter M; Hammad A; El-Refaay A; Aly H Pediatrics; 2008 Nov; 122(5):e1086-90. PubMed ID: 18977958 [TBL] [Abstract][Full Text] [Related]
35. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Guervilly C; Forel JM; Hraiech S; Demory D; Allardet-Servent J; Adda M; Barreau-Baumstark K; Castanier M; Papazian L; Roch A Crit Care Med; 2012 May; 40(5):1539-45. PubMed ID: 22511135 [TBL] [Abstract][Full Text] [Related]
36. Right ventricular echocardiographic parameters are associated with mortality after acute pulmonary embolism. Khemasuwan D; Yingchoncharoen T; Tunsupon P; Kusunose K; Moghekar A; Klein A; Tonelli AR J Am Soc Echocardiogr; 2015 Mar; 28(3):355-62. PubMed ID: 25560482 [TBL] [Abstract][Full Text] [Related]
37. The hemodynamics of late-onset intrauterine growth restriction by MRI. Zhu MY; Milligan N; Keating S; Windrim R; Keunen J; Thakur V; Ohman A; Portnoy S; Sled JG; Kelly E; Yoo SJ; Gross-Wortmann L; Jaeggi E; Macgowan CK; Kingdom JC; Seed M Am J Obstet Gynecol; 2016 Mar; 214(3):367.e1-367.e17. PubMed ID: 26475425 [TBL] [Abstract][Full Text] [Related]
38. Pulmonary artery to aorta ratio is associated with cardiac structure and functional changes in mild-to-moderate COPD. Cuttica MJ; Bhatt SP; Rosenberg SR; Beussink L; Shah SJ; Smith LJ; Dransfield MT; Kalhan R Int J Chron Obstruct Pulmon Dis; 2017; 12():1439-1446. PubMed ID: 28553096 [TBL] [Abstract][Full Text] [Related]
39. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Jardin F; Delorme G; Hardy A; Auvert B; Beauchet A; Bourdarias JP Anesthesiology; 1990 Jun; 72(6):966-70. PubMed ID: 2190501 [TBL] [Abstract][Full Text] [Related]