BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11685543)

  • 1. Developmental expression of heterotrimeric G-proteins in the murine cerebellar cortex.
    Schüller U; Lamp EC; Schilling K
    Histochem Cell Biol; 2001 Aug; 116(2):149-59. PubMed ID: 11685543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and subcellular distribution of glutamate receptor subunits 2/3 in the developing cerebellar cortex.
    Bergmann M; Fox PA; Grabs D; Post A; Schilling K
    J Neurosci Res; 1996 Jan; 43(1):78-86. PubMed ID: 8838577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAA/benzodiazepine receptor alpha 6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice.
    Varecka L; Wu CH; Rotter A; Frostholm A
    J Comp Neurol; 1994 Jan; 339(3):341-52. PubMed ID: 8132866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice.
    Landis DM; Sidman RL
    J Comp Neurol; 1978 Jun; 179(4):831-63. PubMed ID: 641237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of TAG-1 and synaptophysin in the developing cerebellar cortex: relationship to Purkinje cell dendritic development.
    Stottmann RW; Rivas RJ
    J Comp Neurol; 1998 May; 395(1):121-35. PubMed ID: 9590550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient expression of GABAA receptor alpha2 and alpha3 subunits in differentiating cerebellar neurons.
    Takayama C; Inoue Y
    Brain Res Dev Brain Res; 2004 Feb; 148(2):169-77. PubMed ID: 14766194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in the expression of chemokine receptor CCR1 in the rat cerebellum.
    Cowell RM; Silverstein FS
    J Comp Neurol; 2003 Feb; 457(1):7-23. PubMed ID: 12541321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing subcellular distribution and activity-dependent utilization of a dendritically localized mRNA in developing Purkinje cells.
    Wanner I; Baader SL; Oberdick J; Schilling K
    Mol Cell Neurosci; 2000 Mar; 15(3):275-87. PubMed ID: 10736204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal maturation in the normal and hypothyroid rat cerebellar cortex studied with monoclonal antibody MIT-23.
    Gravel C; Hawkes R
    J Comp Neurol; 1987 Apr; 258(3):447-62. PubMed ID: 3294926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum.
    Weyer A; Schilling K
    J Neurosci Res; 2003 Aug; 73(3):400-9. PubMed ID: 12868073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for an axonal localization of the type 2 corticotropin-releasing factor receptor during postnatal development of the mouse cerebellum.
    Lee KH; Bishop GA; Tian JB; King JS
    Exp Neurol; 2004 May; 187(1):11-22. PubMed ID: 15081583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association and colocalization of G protein alpha subunits and Purkinje cell protein 2 (Pcp2) in mammalian cerebellum.
    Redd KJ; Oberdick J; McCoy J; Denker BM; Luo Y
    J Neurosci Res; 2002 Dec; 70(5):631-7. PubMed ID: 12424730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3' untranslated region of Shank1 mRNA.
    Böckers TM; Segger-Junius M; Iglauer P; Bockmann J; Gundelfinger ED; Kreutz MR; Richter D; Kindler S; Kreienkamp HJ
    Mol Cell Neurosci; 2004 May; 26(1):182-90. PubMed ID: 15121189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical localization of G protein beta1, beta2, beta3, beta4, beta5, and gamma3 subunits in the adult rat brain.
    Liang JJ; Cockett M; Khawaja XZ
    J Neurochem; 1998 Jul; 71(1):345-55. PubMed ID: 9648884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purkinje cell lineage and the topographic organization of the cerebellar cortex: a view from X inactivation mosaics.
    Baader SL; Schilling ML; Rosengarten B; Pretsch W; Teutsch HF; Oberdick J; Schilling K
    Dev Biol; 1996 Mar; 174(2):393-406. PubMed ID: 8631510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elements of the nitric oxide/cGMP pathway expressed in cerebellar granule cells: biochemical and functional characterisation.
    Jurado S; Sánchez-Prieto J; Torres M
    Neurochem Int; 2004 Nov; 45(6):833-43. PubMed ID: 15312977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex.
    Takács J; Hámori J
    J Neurosci Res; 1994 Aug; 38(5):515-30. PubMed ID: 7815471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary.
    Logan C; Millar C; Bharadia V; Rouleau K
    J Comp Neurol; 2002 Jun; 448(2):138-49. PubMed ID: 12012426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus.
    Mugnaini E; Berrebi AS; Dahl AL; Morgan JI
    Arch Ital Biol; 1987 Dec; 126(1):41-67. PubMed ID: 3449006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stereological analysis of the cerebellar granule and Purkinje cells of 30-day-old and adult rats undernourished during early postnatal life.
    Bedi KS; Hall R; Davies CA; Dobbing J
    J Comp Neurol; 1980 Oct; 193(4):863-70. PubMed ID: 7430442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.