BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

923 related articles for article (PubMed ID: 11686496)

  • 1. Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord.
    Weaver LC; Verghese P; Bruce JC; Fehlings MG; Krenz NR; Marsh DR
    J Neurotrauma; 2001 Oct; 18(10):1107-19. PubMed ID: 11686496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic dysreflexia after spinal cord injury: central mechanisms and strategies for prevention.
    Weaver LC; Marsh DR; Gris D; Brown A; Dekaban GA
    Prog Brain Res; 2006; 152():245-63. PubMed ID: 16198705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmental organization of spinal reflexes mediating autonomic dysreflexia after spinal cord injury.
    Rabchevsky AG
    Prog Brain Res; 2006; 152():265-74. PubMed ID: 16198706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of effects of methylprednisolone and anti-CD11d antibody treatments on autonomic dysreflexia after spinal cord injury.
    Gris D; Marsh DR; Dekaban GA; Weaver LC
    Exp Neurol; 2005 Aug; 194(2):541-9. PubMed ID: 15890340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomic dysreflexia in a mouse model of spinal cord injury.
    Jacob JE; Pniak A; Weaver LC; Brown A
    Neuroscience; 2001; 108(4):687-93. PubMed ID: 11738503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia.
    Cameron AA; Smith GM; Randall DC; Brown DR; Rabchevsky AG
    J Neurosci; 2006 Mar; 26(11):2923-32. PubMed ID: 16540569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of autonomic dysreflexia after spinal cord injury is associated with a lack of serotonergic axons in the intermediolateral cell column.
    Cormier CM; Mukhida K; Walker G; Marsh DR
    J Neurotrauma; 2010 Oct; 27(10):1805-18. PubMed ID: 20698759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutralizing intraspinal nerve growth factor with a trkA-IgG fusion protein blocks the development of autonomic dysreflexia in a clip-compression model of spinal cord injury.
    Marsh DR; Wong ST; Meakin SO; MacDonald JI; Hamilton EF; Weaver LC
    J Neurotrauma; 2002 Dec; 19(12):1531-41. PubMed ID: 12542855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomic dysreflexia, induced by noxious or innocuous stimulation, does not depend on changes in dorsal horn substance p.
    Marsh DR; Weaver LC
    J Neurotrauma; 2004 Jun; 21(6):817-28. PubMed ID: 15253807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury.
    Krenz NR; Meakin SO; Krassioukov AV; Weaver LC
    J Neurosci; 1999 Sep; 19(17):7405-14. PubMed ID: 10460247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomic dysreflexia after spinal cord transection or compression in 129Sv, C57BL, and Wallerian degeneration slow mutant mice.
    Jacob JE; Gris P; Fehlings MG; Weaver LC; Brown A
    Exp Neurol; 2003 Sep; 183(1):136-46. PubMed ID: 12957497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspinal sprouting of unmyelinated pelvic afferents after complete spinal cord injury is correlated with autonomic dysreflexia induced by visceral pain.
    Hou S; Duale H; Rabchevsky AG
    Neuroscience; 2009 Mar; 159(1):369-79. PubMed ID: 19146928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia.
    Laird AS; Carrive P; Waite PM
    J Physiol; 2006 Dec; 577(Pt 2):539-48. PubMed ID: 16973703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury.
    Kalincík T; Choi EA; Féron F; Bianco J; Sutharsan R; Hayward I; Mackay-Sim A; Carrive P; Waite PM
    Auton Neurosci; 2010 Apr; 154(1-2):20-9. PubMed ID: 19896908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal microscopic analysis reveals sprouting of primary afferent fibres in rat dorsal horn after spinal cord injury.
    Wong ST; Atkinson BA; Weaver LC
    Neurosci Lett; 2000 Dec; 296(2-3):65-8. PubMed ID: 11108982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic approaches to autonomic dysreflexia.
    Brown A; Jacob JE
    Prog Brain Res; 2006; 152():299-313. PubMed ID: 16198709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprouting of primary afferent fibers after spinal cord transection in the rat.
    Krenz NR; Weaver LC
    Neuroscience; 1998 Jul; 85(2):443-58. PubMed ID: 9622243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of supraspinal vasomotor pathways and autonomic dysreflexia after spinal cord injury in F344 rats.
    Hou S; Lu P; Blesch A
    Auton Neurosci; 2013 Jun; 176(1-2):54-63. PubMed ID: 23466042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of treadmill training on autonomic dysreflexia in spinal cord--injured rats.
    Laird AS; Carrive P; Waite PM
    Neurorehabil Neural Repair; 2009 Nov; 23(9):910-20. PubMed ID: 19451618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.