These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11686637)

  • 1. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux.
    Singh SN
    Environ Int; 2001 Oct; 27(4):265-74. PubMed ID: 11686637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production.
    Kammann C; Grünhage L; Jäger HJ; Wachinger G
    Environ Pollut; 2001; 115(2):261-73. PubMed ID: 11706799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.
    Yao Y; Su Y; Wu Y; Liu W; He R
    J Hazard Mater; 2015; 283():871-9. PubMed ID: 25464331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane dynamics in an alpine fen: a field-based study on methanogenic and methanotrophic microbial communities.
    Franchini AG; Henneberger R; Aeppli M; Zeyer J
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25789997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review.
    Laanbroek HJ
    Ann Bot; 2010 Jan; 105(1):141-53. PubMed ID: 19689973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on temporal variation in methane emission from different rice cultivars under the influence of weeds.
    Tyagi L; Verma A; Singh SN
    Environ Monit Assess; 2004; 93(1-3):91-101. PubMed ID: 15074611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane (CH4) emission from a natural wetland of northern China.
    Huang GH; Li XZ; Hu YM; Shi Y; Xiao DN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1227-38. PubMed ID: 15921278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest.
    Yu K; Faulkner SP; Patrick WH
    Chemosphere; 2006 Feb; 62(6):905-14. PubMed ID: 16043211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical assessment of dumpsite soil suitability to enhance methane bio-oxidation under interactive influence of substrates and temperature.
    Bajar S; Singh A; Kaushik CP; Kaushik A
    Waste Manag; 2017 May; 63():188-195. PubMed ID: 28063834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.
    Liu S; Hu Z; Wu S; Li S; Li Z; Zou J
    Environ Sci Technol; 2016 Jan; 50(2):633-42. PubMed ID: 26669815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing'an Mountains of China.].
    Hao L; Mu CC; Chang YH; Shen ZQ; Han LD; Jiang N; Peng WH
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1713-1725. PubMed ID: 31107028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of rice plants on methane emission from paddy fields].
    Jia Z; Cai Z
    Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):2049-53. PubMed ID: 14997675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A field trial of nutrient stimulation of methanotrophs to reduce greenhouse gas emissions from landfill cover soils.
    Lizik W; Im J; Semrau JD; Barcelona MJ
    J Air Waste Manag Assoc; 2013 Mar; 63(3):300-9. PubMed ID: 23556240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands.
    Zhang J; Jiao S; Lu Y
    Sci Total Environ; 2018 May; 622-623():664-675. PubMed ID: 29223893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission.
    Pump J; Pratscher J; Conrad R
    Environ Microbiol; 2015 Jul; 17(7):2254-60. PubMed ID: 25367104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of environmental factors on CH4 emission from Reed Wetland].
    Huang G; Li Y; Chen G; Yang Y; Zhao C
    Huan Jing Ke Xue; 2001 Jan; 22(1):1-5. PubMed ID: 11382025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Straw return to rice paddy: soil carbon sequestration and increased methane emission].
    Lu F; Wang XK; Han B; Ouyang ZY; Zheng H
    Ying Yong Sheng Tai Xue Bao; 2010 Jan; 21(1):99-108. PubMed ID: 20387430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia.
    Karthikeyan OP; Chidambarampadmavathy K; Nadarajan S; Heimann K
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4346-57. PubMed ID: 26867685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of rice-duck farming on paddy field's methane emission].
    Zhan M; Cao CG; Wang JP; Yuan WL; Jiang Y; Gao DW
    Ying Yong Sheng Tai Xue Bao; 2008 Dec; 19(12):2666-72. PubMed ID: 19288721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between carbon dioxide/methane emissions and the water quality/sediment characteristics of Taiwan's main rivers.
    Wu LC; Wei CB; Yang SS; Chang TH; Pan HW; Chung YC
    J Air Waste Manag Assoc; 2007 Mar; 57(3):319-27. PubMed ID: 17385598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.