BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1168673)

  • 1. Human lymphocyte cytotoxicity against mumps virus-infected target cells. Requirement for non-T cells.
    Härfast B; Andersson T; Perlmann P
    J Immunol; 1975 Jun; 114(6):1820-3. PubMed ID: 1168673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro method for study of human lymphocyte cytotoxicity against mumps-virus-infected target cells.
    Andersson T; Stejskal V; Harfast B
    J Immunol; 1975 Jan; 114(1 Pt 1):237-43. PubMed ID: 803527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human antibody-dependent cellular cytotoxicity. Isolation and identification of a subpopulation of peripheral blood lymphocytes which kill antibody-coated autologous target cells.
    Brier AM; Chess L; Schlossman SF
    J Clin Invest; 1975 Dec; 56(6):1580-6. PubMed ID: 53242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-mediated cytotoxicity against virus-infected target cells in humans. I. Characterization of the effector lymphocyte.
    Santoli D; Trinchieri G; Lief FS
    J Immunol; 1978 Aug; 121(2):526-31. PubMed ID: 681748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-mediate cytotoxicity in vitro of human lymphocytes against a tissue culture melanoma cell line (igr3).
    Peter HH; Pavie-Fischer J; Fridman WH; Aubert C; Cesarini JP; Roubin R; Kourilsky FM
    J Immunol; 1975 Aug; 115(2):539-48. PubMed ID: 1171141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between human lymphocytes and paramyxovirus-infected cells: adsorption and cytotoxicity.
    Härfast B; Andersson T; Stejskal V; Perlmann P
    J Immunol; 1977 Apr; 118(4):1132-7. PubMed ID: 300397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the cell population involved in viral-specific cell-mediated cytotoxicity in man: evidence for T cell specificity.
    Rola-Pleszczynski M; Hurtado RC; Woody JN; Sell KW; Vincent MM; Hensen SA; Bellanti JA
    J Immunol; 1975 Jul; 115(1):239-42. PubMed ID: 50349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IgM antibody-dependent cell-mediated cytotoxicity in the Moloney sarcoma virus system: the involvement of T and B lymphocytes as effector cells.
    Lamon EW; Whitten HD; Skurzak HM; Andersson B; Lidin B
    J Immunol; 1975 Nov; 115(5):1288-94. PubMed ID: 1080777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subpopulations of human thymus cells differing in their capacity to form stable E-rosettes and in their immunologic reactivity.
    Galili U; Schlesinger M
    J Immunol; 1975 Sep; 115(3):827-33. PubMed ID: 125304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes.
    Pross HF; Jondal M
    Clin Exp Immunol; 1975 Aug; 21(2):226-35. PubMed ID: 810282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of effector cells.
    West WH; Cannon GB; Kay HD; Bonnard GD; Herberman RB
    J Immunol; 1977 Jan; 118(1):355-61. PubMed ID: 299761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virus-induced enhancement of lymphocyte-mediated antibody-dependent cytotoxicity (ADCC) in vitro.
    Alsheikhly AR; Wåhlin B; Andersson T; Perlmann P
    J Immunol; 1984 Jun; 132(6):2760-6. PubMed ID: 6373918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mononuclear cell in human blood which mediates antibody-dependent cellular cytotoxicity to virus-infected target cells. I. Identification of the population of effector cells.
    Shore SL; Melewicz FM; Gordon DS
    J Immunol; 1977 Feb; 118(2):558-66. PubMed ID: 190316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and properties of EA-rosette-forming lymphocytes in humans.
    van Oers MH; Zeijlemaker WP; Schellekens PT
    Eur J Immunol; 1977 Mar; 7(3):143-50. PubMed ID: 324774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of lymphocyte subpopulations in E-RFC-enriched and E-RFC-depleted cell fractions of fresh and cryopreserved lymphocytes.
    Bolhuis RL; Schuit HR
    Clin Exp Immunol; 1979 Feb; 35(2):317-23. PubMed ID: 312177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Tilden AB; Itoh K; Balch CM
    J Immunol; 1987 Feb; 138(4):1068-73. PubMed ID: 3100627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cytotoxic T lymphocytes. III. Large numbers of peripheral blood T cells clonally develop into allorestricted anti-viral cytotoxic T cell populations in vitro.
    Kabelitz D; Herzog WR; Heeg K; Wagner H; Reimann J
    J Mol Cell Immunol; 1987; 3(1):49-60. PubMed ID: 2855406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mononuclear effector cells in human blood.
    Hersey P; Edwards A; Edwards J
    Clin Exp Immunol; 1976 Jan; 23(1):104-13. PubMed ID: 1083316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of primary cytotoxic T cells in venous blood and cerebrospinal fluid of children with mumps meningitis.
    Kreth HW; Kress L; Kress HG; Ott HF; Eckert G
    J Immunol; 1982 Jun; 128(6):2411-5. PubMed ID: 6176633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rosette formation of human lymphoid cells with monkey red blood cells.
    Pellegrino MA; Ferrone S; Theofilopoulos AN
    J Immunol; 1975 Oct; 115(4):1065-71. PubMed ID: 809506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.