These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 11687233)
1. Oxidation of methionine residues affects the structure and stability of apolipoprotein A-I in reconstituted high density lipoprotein particles. Sigalov AB; Stern LJ Chem Phys Lipids; 2001 Nov; 113(1-2):133-46. PubMed ID: 11687233 [TBL] [Abstract][Full Text] [Related]
2. The charge and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. Sparks DL; Lund-Katz S; Phillips MC J Biol Chem; 1992 Dec; 267(36):25839-47. PubMed ID: 1464598 [TBL] [Abstract][Full Text] [Related]
3. The effect of apolipoprotein A-II on the structure and function of apolipoprotein A-I in a homogeneous reconstituted high density lipoprotein particle. Durbin DM; Jonas A J Biol Chem; 1997 Dec; 272(50):31333-9. PubMed ID: 9395462 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of methionine residues to methionine sulfoxides does not decrease potential antiatherogenic properties of apolipoprotein A-I. Panzenböck U; Kritharides L; Raftery M; Rye KA; Stocker R J Biol Chem; 2000 Jun; 275(26):19536-44. PubMed ID: 10751387 [TBL] [Abstract][Full Text] [Related]
5. Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Gorshkova IN; Liu T; Kan HY; Chroni A; Zannis VI; Atkinson D Biochemistry; 2006 Jan; 45(4):1242-54. PubMed ID: 16430220 [TBL] [Abstract][Full Text] [Related]
6. Dihydrolipoic acid as an effective cofactor for peptide methionine sulfoxide reductase in enzymatic repair of oxidative damage to both lipid-free and lipid-bound apolipoprotein a-I. Sigalov AB; Stern LJ Antioxid Redox Signal; 2002 Jun; 4(3):553-7. PubMed ID: 12215223 [TBL] [Abstract][Full Text] [Related]
7. The number of amphipathic alpha-helical segments of apolipoproteins A-I, E, and A-IV determines the size and functional properties of their reconstituted lipoprotein particles. Jonas A; Steinmetz A; Churgay L J Biol Chem; 1993 Jan; 268(3):1596-602. PubMed ID: 8420935 [TBL] [Abstract][Full Text] [Related]
8. Effects of protein oxidation on the structure and stability of model discoidal high-density lipoproteins. Jayaraman S; Gantz DL; Gursky O Biochemistry; 2008 Mar; 47(12):3875-82. PubMed ID: 18302337 [TBL] [Abstract][Full Text] [Related]
9. Oxidized-phospholipids in reconstituted high density lipoprotein particles affect structure and function of recombinant paraoxonase 1. Kar S; Patel MA; Tripathy RK; Bajaj P; Pande AH Biochim Biophys Acta; 2013 Dec; 1831(12):1714-20. PubMed ID: 23973798 [TBL] [Abstract][Full Text] [Related]
10. The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. Rye KA; Hime NJ; Barter PJ J Biol Chem; 1995 Jan; 270(1):189-96. PubMed ID: 7814372 [TBL] [Abstract][Full Text] [Related]
11. Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes. Chen B; Ren X; Neville T; Jerome WG; Hoyt DW; Sparks D; Ren G; Wang J Protein Sci; 2009 May; 18(5):921-35. PubMed ID: 19384992 [TBL] [Abstract][Full Text] [Related]
12. Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. Jonas A; Wald JH; Toohill KL; Krul ES; Kézdy KE J Biol Chem; 1990 Dec; 265(36):22123-9. PubMed ID: 2125044 [TBL] [Abstract][Full Text] [Related]
13. The conformation of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. 13C NMR studies of lysine ionization behavior. Sparks DL; Phillips MC; Lund-Katz S J Biol Chem; 1992 Dec; 267(36):25830-8. PubMed ID: 1464597 [TBL] [Abstract][Full Text] [Related]
14. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Curtiss LK; Bonnet DJ; Rye KA Biochemistry; 2000 May; 39(19):5712-21. PubMed ID: 10801321 [TBL] [Abstract][Full Text] [Related]
15. Comparative models for human apolipoprotein A-I bound to lipid in discoidal high-density lipoprotein particles. Klon AE; Segrest JP; Harvey SC Biochemistry; 2002 Sep; 41(36):10895-905. PubMed ID: 12206659 [TBL] [Abstract][Full Text] [Related]
16. Lipid-free structure and stability of apolipoprotein A-I: probing the central region by mutation. Gorshkova IN; Liu T; Zannis VI; Atkinson D Biochemistry; 2002 Aug; 41(33):10529-39. PubMed ID: 12173940 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional properties of human and mouse apolipoprotein A-I. Gong EL; Tan CS; Shoukry MI; Rubin EM; Nichols AV Biochim Biophys Acta; 1994 Aug; 1213(3):335-42. PubMed ID: 8049247 [TBL] [Abstract][Full Text] [Related]
18. Effect of apolipoprotein A-I lipidation on the formation and function of pre-beta and alpha-migrating LpA-I particles. Sparks DL; Frank PG; Braschi S; Neville TA; Marcel YL Biochemistry; 1999 Feb; 38(6):1727-35. PubMed ID: 10026251 [TBL] [Abstract][Full Text] [Related]
19. Oxidized phospholipid content destabilizes the structure of reconstituted high density lipoprotein particles and changes their function. Kar S; Patel MA; Tripathy RK; Bajaj P; Suvarnakar UV; Pande AH Biochim Biophys Acta; 2012 Sep; 1821(9):1200-10. PubMed ID: 22634518 [TBL] [Abstract][Full Text] [Related]