BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 11687546)

  • 1. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse.
    Li Q; Timmers AM; Hunter K; Gonzalez-Pola C; Lewin AS; Reitze DH; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2981-9. PubMed ID: 11687546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of degenerative retinoschisis from retinal detachment using optical coherence tomography.
    Ip M; Garza-Karren C; Duker JS; Reichel E; Swartz JC; Amirikia A; Puliafito CA
    Ophthalmology; 1999 Mar; 106(3):600-5. PubMed ID: 10080221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous fundus imaging and optical coherence tomography of the mouse retina.
    Kocaoglu OP; Uhlhorn SR; Hernandez E; Juarez RA; Will R; Parel JM; Manns F
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1283-9. PubMed ID: 17325174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes of the retina in retinal vein occlusion--imaging and quantification with optical coherence tomography.
    Lerche RC; Schaudig U; Scholz F; Walter A; Richard G
    Ophthalmic Surg Lasers; 2001; 32(4):272-80. PubMed ID: 11475391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring morphological changes in the retina of rhodopsin-/- mice with spectral domain optical coherence tomography.
    Wang R; Jiang C; Ma J; Young MJ
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3967-72. PubMed ID: 22618589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment artifacts in optical coherence tomography analyzed images.
    Leung CK; Chan WM; Chong KK; Chan KC; Yung WH; Tsang MK; Tse RK; Lam DS
    Ophthalmology; 2007 Feb; 114(2):263-70. PubMed ID: 17123619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography.
    Kim KH; Puoris'haag M; Maguluri GN; Umino Y; Cusato K; Barlow RB; de Boer JF
    J Vis; 2008 Jan; 8(1):17.1-11. PubMed ID: 18318620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles.
    Lee DC; Xu J; Sarunic MV; Moritz OL
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1066-70. PubMed ID: 19741241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal transplants evaluated by optical coherence tomography in photoreceptor degenerate rats.
    Thomas BB; Arai S; Ikai Y; Qiu G; Chen Z; Aramant RB; Sadda SR; Seiler MJ
    J Neurosci Methods; 2006 Mar; 151(2):186-93. PubMed ID: 16129495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal function after scleral buckling for recent onset rhegmatogenous retinal detachment: assessment with electroretinography and optical coherence tomography.
    Schatz P; Holm K; Andréasson S
    Retina; 2007 Jan; 27(1):30-6. PubMed ID: 17218912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease.
    White DA; Fritz JJ; Hauswirth WW; Kaushal S; Lewin AS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1942-51. PubMed ID: 17460245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redefining the limit of the outer retina in optical coherence tomography scans.
    Pons ME; Garcia-Valenzuela E
    Ophthalmology; 2005 Jun; 112(6):1079-85. PubMed ID: 15882904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography.
    Sarunic MV; Yazdanpanah A; Gibson E; Xu J; Bai Y; Lee S; Saragovi HU; Beg MF
    Opt Express; 2010 Oct; 18(22):23435-41. PubMed ID: 21164686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the posterior segment of the cat eye by optical coherence tomography (OCT).
    Gekeler F; Gmeiner H; Völker M; Sachs H; Messias A; Eule C; Bartz-Schmidt KU; Zrenner E; Shinoda K
    Vet Ophthalmol; 2007; 10(3):173-8. PubMed ID: 17445079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of lentiviral transduction during development in normal and rd mice.
    Pang J; Cheng M; Haire SE; Barker E; Planelles V; Blanks JC
    Mol Vis; 2006 Jul; 12():756-67. PubMed ID: 16862069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grayscale and proportion-corrected optical coherence tomography images.
    Ishikawa H; Gürses-Ozden R; Hoh ST; Dou HL; Liebmann JM; Ritch R
    Ophthalmic Surg Lasers; 2000; 31(3):223-8. PubMed ID: 10847500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse.
    Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):781-7. PubMed ID: 18235028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.