BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 11687817)

  • 1. Persistent and specific influences of early acoustic environments on primary auditory cortex.
    Zhang LI; Bao S; Merzenich MM
    Nat Neurosci; 2001 Nov; 4(11):1123-30. PubMed ID: 11687817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period.
    Zhang LI; Bao S; Merzenich MM
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2309-14. PubMed ID: 11842227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex.
    Pienkowski M; Harrison RV
    J Neurophysiol; 2005 Jan; 93(1):454-66. PubMed ID: 15342716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of ferret auditory cortex.
    Bizley JK; Nodal FR; Nelken I; King AJ
    Cereb Cortex; 2005 Oct; 15(10):1637-53. PubMed ID: 15703254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of neuronal responses to frequency-modulated tones in chinchilla auditory cortex.
    Brown TA; Harrison RV
    Brain Res; 2010 Jan; 1309():29-39. PubMed ID: 19874805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental noise retards auditory cortical development.
    Chang EF; Merzenich MM
    Science; 2003 Apr; 300(5618):498-502. PubMed ID: 12702879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice.
    Takahashi K; Hishida R; Kubota Y; Kudoh M; Takahashi S; Shibuki K
    Eur J Neurosci; 2006 Mar; 23(5):1365-76. PubMed ID: 16553797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric auditory receptive field organization across five cortical fields in the albino rat.
    Polley DB; Read HL; Storace DA; Merzenich MM
    J Neurophysiol; 2007 May; 97(5):3621-38. PubMed ID: 17376842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tone responses in core versus belt auditory cortex in the developing chinchilla.
    Pienkowski M; Harrison RV
    J Comp Neurol; 2005 Nov; 492(1):101-9. PubMed ID: 16175561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex.
    Noreña AJ; Gourévitch B; Aizawa N; Eggermont JJ
    Nat Neurosci; 2006 Jul; 9(7):932-9. PubMed ID: 16783369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field.
    Doron NN; Ledoux JE; Semple MN
    J Comp Neurol; 2002 Nov; 453(4):345-60. PubMed ID: 12389207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contextual modulation of frequency tuning of neurons in the rat auditory cortex.
    Peng Y; Sun X; Zhang J
    Neuroscience; 2010 Sep; 169(3):1403-13. PubMed ID: 20553820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamocortical pathway specialization for sound frequency resolution.
    Storace DA; Higgins NC; Read HL
    J Comp Neurol; 2011 Feb; 519(2):177-93. PubMed ID: 21165970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys.
    Kosaki H; Hashikawa T; He J; Jones EG
    J Comp Neurol; 1997 Sep; 386(2):304-16. PubMed ID: 9295154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.
    Xu J; Yu L; Zhang J; Cai R; Sun X
    J Neurosci Res; 2010 Feb; 88(3):614-9. PubMed ID: 19774669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic factors govern developmental sharpening of spatial tuning in the auditory cortex.
    Mrsic-Flogel TD; Schnupp JW; King AJ
    Nat Neurosci; 2003 Sep; 6(9):981-8. PubMed ID: 12910241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of low-probability sounds by cortical neurons.
    Ulanovsky N; Las L; Nelken I
    Nat Neurosci; 2003 Apr; 6(4):391-8. PubMed ID: 12652303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons.
    Engineer ND; Percaccio CR; Pandya PK; Moucha R; Rathbun DL; Kilgard MP
    J Neurophysiol; 2004 Jul; 92(1):73-82. PubMed ID: 15014105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex.
    Mrsic-Flogel TD; Versnel H; King AJ
    Eur J Neurosci; 2006 Feb; 23(3):780-92. PubMed ID: 16487158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.