These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 11687877)
21. Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut. Leonardi MG; Caccia S; González-Cabrera J; Ferré J; Giordana B J Membr Biol; 2006; 214(3):157-64. PubMed ID: 17558532 [TBL] [Abstract][Full Text] [Related]
22. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Lee MK; Young BA; Dean DH Biochem Biophys Res Commun; 1995 Nov; 216(1):306-12. PubMed ID: 7488105 [TBL] [Abstract][Full Text] [Related]
24. Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa. Vachon V; Préfontaine G; Coux F; Rang C; Marceau L; Masson L; Brousseau R; Frutos R; Schwartz JL; Laprade R Biochemistry; 2002 May; 41(19):6178-84. PubMed ID: 11994014 [TBL] [Abstract][Full Text] [Related]
25. Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Rajamohan F; Alzate O; Cotrill JA; Curtiss A; Dean DH Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14338-43. PubMed ID: 8962052 [TBL] [Abstract][Full Text] [Related]
26. Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities. Vachon V; Préfontaine G; Rang C; Coux F; Juteau M; Schwartz JL; Brousseau R; Frutos R; Laprade R; Masson L Appl Environ Microbiol; 2004 Oct; 70(10):6123-30. PubMed ID: 15466558 [TBL] [Abstract][Full Text] [Related]
27. Atomic force microscopy imaging of Bacillus thuringiensis Cry1 toxins interacting with insect midgut apical membranes. Laflamme E; Badia A; Lafleur M; Schwartz JL; Laprade R J Membr Biol; 2008 Apr; 222(3):127-39. PubMed ID: 18523711 [TBL] [Abstract][Full Text] [Related]
28. Study of the irreversible binding of Bacillus thuringiensis Cry1Aa to brush border membrane vesicles from Bombyx mori midgut. Ihara H; Himeno M J Invertebr Pathol; 2008 Jun; 98(2):177-83. PubMed ID: 18433767 [TBL] [Abstract][Full Text] [Related]
29. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
30. Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Lee MK; Curtiss A; Alcantara E; Dean DH Appl Environ Microbiol; 1996 Feb; 62(2):583-6. PubMed ID: 8593057 [TBL] [Abstract][Full Text] [Related]
31. Screening of the Bacillus thuringiensis Cry1Ac delta-endotoxin on the artificial phospholipid monolayer incorporated with brush border membrane vesicles of Plutella xylostella by optical biosensor technology. Okumura S; Akao T; Mizuki E; Ohba M; Inouye K J Biochem Biophys Methods; 2001 Feb; 47(3):177-88. PubMed ID: 11245889 [TBL] [Abstract][Full Text] [Related]
32. Protease inhibitors fail to prevent pore formation by the activated Bacillus thuringiensis toxin Cry1Aa in insect brush border membrane vesicles. Kirouac M; Vachon V; Quievy D; Schwartz JL; Laprade R Appl Environ Microbiol; 2006 Jan; 72(1):506-15. PubMed ID: 16391085 [TBL] [Abstract][Full Text] [Related]
33. Blocking binding of Bacillus thuringiensis Cry1Aa to Bombyx mori cadherin receptor results in only a minor reduction of toxicity. You TH; Lee MK; Jenkins JL; Alzate O; Dean DH BMC Biochem; 2008 Jan; 9():3. PubMed ID: 18218126 [TBL] [Abstract][Full Text] [Related]
34. Rapid topology probing using fluorescence spectroscopy in planar lipid bilayer: the pore-forming mechanism of the toxin Cry1Aa of Bacillus thuringiensis. Groulx N; Juteau M; Blunck R J Gen Physiol; 2010 Nov; 136(5):497-513. PubMed ID: 20974771 [TBL] [Abstract][Full Text] [Related]
35. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Puntheeranurak T; Stroh C; Zhu R; Angsuthanasombat C; Hinterdorfer P Ultramicroscopy; 2005 Nov; 105(1-4):115-24. PubMed ID: 16125846 [TBL] [Abstract][Full Text] [Related]
36. Interaction of the insecticidal crystal protein CryIA from Bacillus thuringiensis with amino acid transport into brush border membranes from Bombyx mori larval midgut. Parenti P; Villa M; Hanozet GM; Tasca M; Giordana B J Invertebr Pathol; 1995 Jan; 65(1):35-42. PubMed ID: 7876592 [TBL] [Abstract][Full Text] [Related]
37. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin. Abdelmalek N; Sellami S; Kallassy-Awad M; Tounsi MF; Mebarkia A; Tounsi S; Rouis S Pestic Biochem Physiol; 2017 Apr; 137():91-97. PubMed ID: 28364809 [TBL] [Abstract][Full Text] [Related]
38. Estimation of the radius of the pores formed by the Bacillus thuringiensis Cry1C delta-endotoxin in planar lipid bilayers. Peyronnet O; Nieman B; Généreux F; Vachon V; Laprade R; Schwartz JL Biochim Biophys Acta; 2002 Dec; 1567(1-2):113-22. PubMed ID: 12488044 [TBL] [Abstract][Full Text] [Related]
39. Activity of Bacillus thuringiensis delta-endotoxins against codling moth (Cydia pomonella L.) larvae. Boncheva R; Dukiandjiev S; Minkov I; de Maagd RA; Naimov S J Invertebr Pathol; 2006 Jun; 92(2):96-9. PubMed ID: 16530218 [TBL] [Abstract][Full Text] [Related]
40. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Lee MK; Walters FS; Hart H; Palekar N; Chen JS Appl Environ Microbiol; 2003 Aug; 69(8):4648-57. PubMed ID: 12902253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]