These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11687929)

  • 21. Iron enriched yeast biomass--a promising mineral feed supplement.
    Pas M; Piskur B; Sustaric M; Raspor P
    Bioresour Technol; 2007 May; 98(8):1622-8. PubMed ID: 16935492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast.
    Fedorovych D; Kszeminska H; Babjak L; Kaszycki P; Koloczek H
    Biometals; 2001 Mar; 14(1):23-31. PubMed ID: 11368272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement.
    Pattanakittivorakul S; Lertwattanasakul N; Yamada M; Limtong S
    Antonie Van Leeuwenhoek; 2019 Jul; 112(7):975-990. PubMed ID: 30666530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of killer strains of Saccharomyces cerevisiae on wine fermentation.
    Pérez F; Ramírez M; Regodón JA
    Antonie Van Leeuwenhoek; 2001 Sep; 79(3-4):393-9. PubMed ID: 11816985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain.
    Eshkol N; Sendovski M; Bahalul M; Katz-Ezov T; Kashi Y; Fishman A
    J Appl Microbiol; 2009 Feb; 106(2):534-42. PubMed ID: 19200319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cultivation mode on a bioprocess for chromium yeast biomass enrichment.
    Batic M; Raspor P
    Pflugers Arch; 2000 Jan; 439(Suppl 1):r073-r075. PubMed ID: 28176078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The kinetic reduction of Cr(VI) by yeast Saccharomyces cerevisiae, Phaffia rhodozyma and their protoplasts.
    Chwastowski J; Kołoczek H
    Acta Biochim Pol; 2013; 60(4):829-34. PubMed ID: 24432341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae.
    Mrvcić J; Stanzer D; Stehlik-Tomas V; Skevin D; Grba S
    J Biosci Bioeng; 2007 Apr; 103(4):331-7. PubMed ID: 17502274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromium tolerant yeast strains isolated from industrial effluents and their possible use in environmental clean-up.
    Dar N; Shakoori AR
    Bull Environ Contam Toxicol; 1999 Dec; 63(6):744-50. PubMed ID: 10594148
    [No Abstract]   [Full Text] [Related]  

  • 33. Statistical optimization of culture conditions for biomass production of probiotic gut-borne Saccharomyces cerevisiae strain able to reduce fumonisin B1.
    Armando MR; Galvagno MA; Dogi CA; Cerrutti P; Dalcero AM; Cavaglieri LR
    J Appl Microbiol; 2013 May; 114(5):1338-46. PubMed ID: 23347149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of lipid content on the elemental composition and energy capacity of yeast biomass.
    Minkevich IG; Dedyukhina EG; Chistyakova TI
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):799-806. PubMed ID: 20721550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae.
    Suhajda A; Hegóczki J; Janzsó B; Pais I; Vereczkey G
    J Trace Elem Med Biol; 2000 Apr; 14(1):43-7. PubMed ID: 10836533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical media optimization for the biomass production of postharvest biocontrol yeast Rhodosporidium paludigenum.
    Wang P; Liu X; Wang Y; Ruan H; Zheng X
    Prep Biochem Biotechnol; 2011; 41(4):382-97. PubMed ID: 21967338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pulsed electric fields upon accumulation of zinc in Saccharomyces cerevisiae.
    Pankiewicz U; Jamroz J
    J Microbiol Biotechnol; 2011 Jun; 21(6):646-51. PubMed ID: 21715972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments.
    De Rossi A; Rigon MR; Zaparoli M; Braido RD; Colla LM; Dotto GL; Piccin JS
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):19179-19186. PubMed ID: 29808404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium.
    Bahafid W; Tahri Joutey N; Sayel H; Boularab I; El Ghachtouli N
    J Appl Microbiol; 2013 Sep; 115(3):727-34. PubMed ID: 23773206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae.
    Pankiewicz U; Jamroz J
    J Microbiol Biotechnol; 2007 Jul; 17(7):1139-46. PubMed ID: 18051325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.