These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 11687930)
1. Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. Fan KW; Chen F; Jones EB; Vrijmoed LL J Ind Microbiol Biotechnol; 2001 Oct; 27(4):199-202. PubMed ID: 11687930 [TBL] [Abstract][Full Text] [Related]
2. Dynamic flux balance analysis of biomass and lipid production by Antarctic thraustochytrid Oblongichytrium sp. RT2316-13. Shene C; Paredes P; Flores L; Leyton A; Asenjo JA; Chisti Y Biotechnol Bioeng; 2020 Oct; 117(10):3006-3017. PubMed ID: 32557613 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Yang HL; Lu CK; Chen SF; Chen YM; Chen YM Mar Biotechnol (NY); 2010 Apr; 12(2):173-85. PubMed ID: 19609613 [TBL] [Abstract][Full Text] [Related]
4. Coconut water as a medium additive for the production of docosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02. Unagul P; Assantachai C; Phadungruengluij S; Suphantharika M; Tanticharoen M; Verduyn C Bioresour Technol; 2007 Jan; 98(2):281-7. PubMed ID: 16563749 [TBL] [Abstract][Full Text] [Related]
5. Thraustochytrid Marine Protists: production of PUFAs and Other Emerging Technologies. Raghukumar S Mar Biotechnol (NY); 2008; 10(6):631-40. PubMed ID: 18712565 [TBL] [Abstract][Full Text] [Related]
6. Microbial production of docosahexaenoic acid by a low temperature-adaptive strain Thraustochytriidae sp. Z105: screening and optimization. Zhou PP; Lu MB; Li W; Yu LJ J Basic Microbiol; 2010 Aug; 50(4):380-7. PubMed ID: 20473964 [TBL] [Abstract][Full Text] [Related]
7. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Liu Y; Tang J; Li J; Daroch M; Cheng JJ Appl Microbiol Biotechnol; 2014 Dec; 98(23):9643-52. PubMed ID: 25186147 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Lee Chang KJ; Nichols CM; Blackburn SI; Dunstan GA; Koutoulis A; Nichols PD Mar Biotechnol (NY); 2014 Aug; 16(4):396-411. PubMed ID: 24463839 [TBL] [Abstract][Full Text] [Related]
9. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Ratledge C; Kanagachandran K; Anderson AJ; Grantham DJ; Stephenson JC Lipids; 2001 Nov; 36(11):1241-6. PubMed ID: 11795857 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of eicosapentaenoic and docosahexaenoic acids by a yeast (FO726A). Guo X; Ota Y J Appl Microbiol; 2000 Jul; 89(1):107-15. PubMed ID: 10945786 [TBL] [Abstract][Full Text] [Related]
11. Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. Nagano N; Taoka Y; Honda D; Hayashi M J Oleo Sci; 2009; 58(12):623-8. PubMed ID: 19915319 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Burja AM; Radianingtyas H; Windust A; Barrow CJ Appl Microbiol Biotechnol; 2006 Oct; 72(6):1161-9. PubMed ID: 16625394 [TBL] [Abstract][Full Text] [Related]
13. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Rosa SM; Soria MA; Vélez CG; Galvagno MA Bioresour Technol; 2010 Apr; 101(7):2367-74. PubMed ID: 20015637 [TBL] [Abstract][Full Text] [Related]
14. Antigastric Cancer Bioactive Aurantiochytrium Oil Rich in Docosahexaenoic Acid: From Media Optimization to Cancer Cells Cytotoxicity Assessment. Shakeri S; Amoozyan N; Fekrat F; Maleki M J Food Sci; 2017 Nov; 82(11):2706-2718. PubMed ID: 29095488 [TBL] [Abstract][Full Text] [Related]
15. Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design. Ding J; Fu Z; Zhu Y; He J; Ma L; Bu D BMC Biotechnol; 2022 Dec; 22(1):39. PubMed ID: 36494804 [TBL] [Abstract][Full Text] [Related]
16. Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. AbuGhazaleh AA; Jenkins TC J Dairy Sci; 2004 Mar; 87(3):645-51. PubMed ID: 15202649 [TBL] [Abstract][Full Text] [Related]
17. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. Yin FW; Guo DS; Ren LJ; Ji XJ; Huang H Bioresour Technol; 2018 Oct; 266():482-487. PubMed ID: 29990764 [TBL] [Abstract][Full Text] [Related]
18. Chemical and Physical Culture Conditions Significantly Influence the Cell Mass and Docosahexaenoic Acid Content of Chen X; Sen B; Zhang S; Bai M; He Y; Wang G Mar Drugs; 2021 Nov; 19(12):. PubMed ID: 34940670 [TBL] [Abstract][Full Text] [Related]
19. Antarctic thraustochytrids: Producers of long-chain omega-3 polyunsaturated fatty acids. Shene C; Paredes P; Vergara D; Leyton A; Garcés M; Flores L; Rubilar M; Bustamante M; Armenta R Microbiologyopen; 2020 Jan; 9(1):e00950. PubMed ID: 31637873 [TBL] [Abstract][Full Text] [Related]
20. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Vong WC; Au Yang KL; Liu SQ Int J Food Microbiol; 2016 Oct; 235():1-9. PubMed ID: 27391864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]