These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11688880)

  • 1. Electromagnetic analysis of axially symmetric diffractive optical elements illuminated by oblique incident plane waves.
    Shi S; Prather DW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2901-7. PubMed ID: 11688880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements.
    Yang H; Xue C; Li C; Wang J; Zhang R
    Appl Opt; 2016 Sep; 55(25):7126-33. PubMed ID: 27607291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic analysis of axially symmetric diffractive lenses with the method of moments.
    Prather DW; Shi S
    J Opt Soc Am A Opt Image Sci Vis; 2000 Apr; 17(4):729-39. PubMed ID: 10757180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method.
    Mirotznik MS; Prather DW; Mait JN; Beck WA; Shi S; Gao X
    Appl Opt; 2000 Jun; 39(17):2871-80. PubMed ID: 18345211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rigorous unidirectional method for designing finite aperture diffractive optical elements.
    Jiang J; Nordin G
    Opt Express; 2000 Sep; 7(6):237-42. PubMed ID: 19407871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffractive optical elements based on Fourier optical techniques: a new class of optics for extreme ultraviolet and soft x-ray wavelengths.
    Chang C; Naulleau P; Anderson E; Rosfjord K; Attwood D
    Appl Opt; 2002 Dec; 41(35):7384-9. PubMed ID: 12502293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving optical illumination distributions along an axially symmetric photodetecting fiber.
    Sorin F; Lestoquoy G; Danto S; Joannopoulos JD; Fink Y
    Opt Express; 2010 Nov; 18(23):24264-75. PubMed ID: 21164772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field stitching algorithm for the analysis of electrically large diffractive optical elements.
    Prather DW; Shi S; Bergey JS
    Opt Lett; 1999 Mar; 24(5):273-5. PubMed ID: 18071477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying a mapped pseudospectral time-domain method in simulating diffractive optical elements.
    Gao X; Mirotznik MS; Shi S; Prather DW
    J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):777-85. PubMed ID: 15139430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings.
    Tervo J; Turunen J
    Opt Lett; 2000 Jun; 25(11):785-6. PubMed ID: 18064183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact off-resonance near fields of small-size extended hemielliptic 2-D lenses illuminated by plane waves.
    Boriskin AV; Sauleau R; Nosich AI
    J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):259-64. PubMed ID: 19183675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light propagation analysis using a translated plane angular spectrum method with the oblique plane wave incidence.
    Son HH; Oh K
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):949-54. PubMed ID: 26366921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended algorithm for the design of diffractive optical elements around the focal plane.
    Wu R; Shu FJ; Zhang W; Zhang XB; Li YP
    Appl Opt; 2007 Aug; 46(23):5779-83. PubMed ID: 17694127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive polychromatic integral diffraction efficiency sensitivity to tilt error for multilayer diffractive optical elements with oblique incidence.
    Yang L; Liu C; Guo R; Zhao Y
    Appl Opt; 2020 Jan; 59(2):508-514. PubMed ID: 32225327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of blazed diffractive optical elements formed with artificial dielectrics.
    Ribot C; Lalanne P; Lee MS; Loiseaux B; Huignard JP
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3819-26. PubMed ID: 18059935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing and spectral characteristics of periodic diffractive optical elements with circular symmetry under femtosecond pulsed illumination.
    Mendoza-Yero O; Mínguez-Vega G; Lancis J; Climent V
    J Opt Soc Am A Opt Image Sci Vis; 2007 Nov; 24(11):3600-5. PubMed ID: 17975586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body-of-revolution finite-difference time-domain for rigorous analysis of three-dimensional axisymmetric transformation optics lenses.
    Wang X; Wu Q; Turpin JP; Werner DH
    Opt Lett; 2013 Jan; 38(1):67-9. PubMed ID: 23282840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction efficiency analysis of dual-layer diffractive elements with oblique incident angles.
    Yang H
    Opt Express; 2023 Nov; 31(24):40221-40234. PubMed ID: 38041328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.