These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42 related articles for article (PubMed ID: 11688981)
1. Interdomain but not intermolecular interactions observed in CFTR channels. Kembi F; Harrington MA Biochem Biophys Res Commun; 2001 Nov; 288(4):819-26. PubMed ID: 11688981 [TBL] [Abstract][Full Text] [Related]
2. Cysteine residues in the nucleotide binding domains regulate the conductance state of CFTR channels. Harrington MA; Kopito RR Biophys J; 2002 Mar; 82(3):1278-92. PubMed ID: 11867445 [TBL] [Abstract][Full Text] [Related]
3. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. Chaves LA; Gadsby DC J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
5. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study. Belmonte L; Moran O Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670 [TBL] [Abstract][Full Text] [Related]
6. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308 [TBL] [Abstract][Full Text] [Related]
7. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
8. Conformational change of the extracellular parts of the CFTR protein during channel gating. Negoda A; Cowley EA; El Hiani Y; Linsdell P Cell Mol Life Sci; 2018 Aug; 75(16):3027-3038. PubMed ID: 29441426 [TBL] [Abstract][Full Text] [Related]
9. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore. Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562 [TBL] [Abstract][Full Text] [Related]
11. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640 [TBL] [Abstract][Full Text] [Related]
12. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
13. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. Sugita M; Yue Y; Foskett JK EMBO J; 1998 Feb; 17(4):898-908. PubMed ID: 9463368 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide-binding domains of human cystic fibrosis transmembrane conductance regulator: detailed sequence analysis and three-dimensional modeling of the heterodimer. Callebaut I; Eudes R; Mornon JP; Lehn P Cell Mol Life Sci; 2004 Jan; 61(2):230-42. PubMed ID: 14745501 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354 [TBL] [Abstract][Full Text] [Related]
16. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane. Ramjeesingh M; Kidd JF; Huan LJ; Wang Y; Bear CE Biochem J; 2003 Sep; 374(Pt 3):793-7. PubMed ID: 12820897 [TBL] [Abstract][Full Text] [Related]
17. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Berger AL; Ikuma M; Welsh MJ Proc Natl Acad Sci U S A; 2005 Jan; 102(2):455-60. PubMed ID: 15623556 [TBL] [Abstract][Full Text] [Related]
18. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability. Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686 [TBL] [Abstract][Full Text] [Related]
19. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Muallem D; Vergani P Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):247-55. PubMed ID: 18957373 [TBL] [Abstract][Full Text] [Related]
20. Intermolecular interaction between R domains of cystic fibrosis transmembrane conductance regulator. Gupta S; Xie J; Ma J; Davis PB Am J Respir Cell Mol Biol; 2004 Feb; 30(2):242-8. PubMed ID: 12933354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]