These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11689130)

  • 21. Synthesis and structure-activity relationships of a novel series of 2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide K(ATP) channel openers: discovery of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9- hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a potent K(ATP) opener that selectively inhibits spontaneous bladder contractions.
    Carroll WA; Altenbach RJ; Bai H; Brioni JD; Brune ME; Buckner SA; Cassidy C; Chen Y; Coghlan MJ; Daza AV; Drizin I; Fey TA; Fitzgerald M; Gopalakrishnan M; Gregg RJ; Henry RF; Holladay MW; King LL; Kort ME; Kym PR; Milicic I; Tang R; Turner SC; Whiteaker KL; Yi L; Zhang H; Sullivan JP
    J Med Chem; 2004 Jun; 47(12):3163-79. PubMed ID: 15163196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of K(ATP) channel modulators on acetylcholine release from guinea-pig isolated atria and small intestine.
    Kilbinger H; Krause A; Mang CF; Englert H; Wirth K
    Naunyn Schmiedebergs Arch Pharmacol; 2002 May; 365(5):371-7. PubMed ID: 12012023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A real-time screening assay for GIRK1/4 channel blockers.
    Walsh KB
    J Biomol Screen; 2010 Dec; 15(10):1229-37. PubMed ID: 20938046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of novel KCNQ4 openers by a high-throughput fluorescence-based thallium flux assay.
    Li Q; Rottländer M; Xu M; Christoffersen CT; Frederiksen K; Wang MW; Jensen HS
    Anal Biochem; 2011 Nov; 418(1):66-72. PubMed ID: 21782781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle.
    Imai T; Okamoto T; Yamamoto Y; Tanaka H; Koike K; Shigenobu K; Tanaka Y
    Acta Physiol Scand; 2001 Nov; 173(3):323-33. PubMed ID: 11736694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators.
    Trivedi S; Dekermendjian K; Julien R; Huang J; Lund PE; Krupp J; Kronqvist R; Larsson O; Bostwick R
    Assay Drug Dev Technol; 2008 Apr; 6(2):167-79. PubMed ID: 18078380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance.
    Kutchinsky J; Friis S; Asmild M; Taboryski R; Pedersen S; Vestergaard RK; Jacobsen RB; Krzywkowski K; Schrøder RL; Ljungstrøm T; Hélix N; Sørensen CB; Bech M; Willumsen NJ
    Assay Drug Dev Technol; 2003 Oct; 1(5):685-93. PubMed ID: 15090241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.
    Lee JY; Ko EJ; Ahn KD; Kim S; Rhee PL
    Am J Physiol Gastrointest Liver Physiol; 2015 Apr; 308(7):G625-33. PubMed ID: 25591864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting cardiac potassium channels for state-of-the-art drug discovery.
    Walsh KB
    Expert Opin Drug Discov; 2015 Feb; 10(2):157-69. PubMed ID: 25400064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion channel diversity in the feline smooth muscle esophagus.
    Salapatek AM; Ji J; Diamant NE
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G288-99. PubMed ID: 11804850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ characterization of the Ca2+ sensitivity of large conductance Ca2+-activated K+ channels: implications for their use as near-membrane Ca2+ indicators in smooth muscle cells.
    Muñoz A; García L; Guerrero-Hernández A
    Biophys J; 1998 Oct; 75(4):1774-82. PubMed ID: 9746519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a novel ATP-sensitive K+ channel opener, A-251179, on urinary bladder relaxation and cystometric parameters.
    Shieh CC; Brune ME; Buckner SA; Whiteaker KL; Molinari EJ; Milicic IA; Fabiyi AC; Daza A; Brioni JD; Carroll WA; Matsushita K; Yamada M; Kurachi Y; Gopalakrishnan M
    Br J Pharmacol; 2007 Jun; 151(4):467-75. PubMed ID: 17435796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of flecainide on ATP-sensitive K(+) channels in pig urethral myocytes.
    Yunoki T; Teramoto N; Naito S; Ito Y
    Br J Pharmacol; 2001 Jul; 133(5):730-8. PubMed ID: 11429398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells.
    Weaver CD; Harden D; Dworetzky SI; Robertson B; Knox RJ
    J Biomol Screen; 2004 Dec; 9(8):671-7. PubMed ID: 15634793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the potassium channel openers, WAY-133537, ZD6169, and celikalim on isolated bladder tissue and In vivo bladder instability in rat.
    Wojdan A; Freeden C; Woods M; Oshiro G; Spinelli W; Colatsky TJ; Sheldon JH; Norton NW; Warga D; Antane MM; Antane SA; Butera JA; Argentieri TM
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1410-8. PubMed ID: 10336534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording.
    Jin SQ; Niu LJ; Deng CY; Yao ZB; Zhou YJ
    Chin Med J (Engl); 2006 Oct; 119(20):1721-6. PubMed ID: 17097020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity.
    Grover GJ; D'Alonzo AJ; Garlid KD; Bajgar R; Lodge NJ; Sleph PG; Darbenzio RB; Hess TA; Smith MA; Paucek P; Atwal KS
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1184-92. PubMed ID: 11356945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K(+) channels and Na(+)-activated K(+) channels.
    Li Y; Sato T; Arita M
    J Pharmacol Exp Ther; 1999 Nov; 291(2):562-8. PubMed ID: 10525072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of K+ channel blockers and cromakalim (BRL 34915) on the mechanical activity of guinea pig detrusor smooth muscle.
    Grant TL; Zuzack JS
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1158-64. PubMed ID: 1722252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the ion channel currents in single myocytes of the guinea pig prostate.
    Lang RJ; Mulholland E; Exintaris B
    J Urol; 2004 Sep; 172(3):1179-87. PubMed ID: 15311066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.