These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11689297)

  • 1. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials.
    Luo YJ; Greenwood PM; Parasuraman R
    Brain Res Cogn Brain Res; 2001 Dec; 12(3):371-81. PubMed ID: 11689297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconstructing Reorienting of Attention: Cue Predictiveness Modulates the Inhibition of the No-target Side and the Hemispheric Distribution of the P1 Response to Invalid Targets.
    Doricchi F; Pellegrino M; Marson F; Pinto M; Caratelli L; Cestari V; Rossi-Arnaud C; Lasaponara S
    J Cogn Neurosci; 2020 Jun; 32(6):1046-1060. PubMed ID: 31967519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention.
    Reuter EM; Mattingley JB; Cunnington R; Riek S; Carroll TJ
    Eur J Neurosci; 2019 Jan; 49(1):120-136. PubMed ID: 30408253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors.
    Allon AS; Luria R
    Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERP effects of spatial attention and display search with unilateral and bilateral stimulus displays.
    Lange JJ; Wijers AA; Mulder LJ; Mulder G
    Biol Psychol; 1999 Jul; 50(3):203-33. PubMed ID: 10461806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding attention control and selection in visual spatial attention.
    Hong X; Bo K; Meyyappan S; Tong S; Ding M
    Hum Brain Mapp; 2020 Oct; 41(14):3900-3921. PubMed ID: 32542852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The attentional effects of peripheral cueing as revealed by two event-related potential studies.
    Fu S; Fan S; Chen L; Zhuo Y
    Clin Neurophysiol; 2001 Jan; 112(1):172-85. PubMed ID: 11137676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain dynamic mechanisms of scale effect in visual spatial attention.
    Song WQ; Li X; Luo YJ; Du BQ; Ji XM
    Neuroreport; 2006 Oct; 17(15):1643-7. PubMed ID: 17001285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuospatial sequence learning on the serial reaction time task modulates the P1 event-related potential.
    Lum JAG; Lammertink I; Clark GM; Fuelscher I; Hyde C; Enticott PG; Ullman MT
    Psychophysiology; 2019 Feb; 56(2):e13292. PubMed ID: 30246295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroencephalographic activity associated with shifts of visuospatial attention.
    Yamaguchi S; Tsuchiya H; Kobayashi S
    Brain; 1994 Jun; 117 ( Pt 3)():553-62. PubMed ID: 8032865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing.
    He X; Humphreys G; Fan S; Chen L; Han S
    Brain Res; 2008 Dec; 1245():116-25. PubMed ID: 18955038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The mechanism of gain in scale of visual attention].
    Gao WB; Wei JH; Peng XH; Luo YJ
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):210-1. PubMed ID: 12222576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamics of shifting visuospatial attention revealed by event-related potentials.
    Nobre AC; Sebestyen GN; Miniussi C
    Neuropsychologia; 2000; 38(7):964-74. PubMed ID: 10775707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting attention in visual space: the effects of peripheral cueing on brain cortical potentials.
    Anllo-Vento L
    Int J Neurosci; 1995; 80(1-4):353-70. PubMed ID: 7775058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention.
    Müller MM; Hillyard S
    Clin Neurophysiol; 2000 Sep; 111(9):1544-52. PubMed ID: 10964063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention.
    Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S
    Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search.
    Brisson B; Jolicoeur P
    PLoS One; 2008; 3(12):e3967. PubMed ID: 19088847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli.
    Wijers AA; Lange JJ; Mulder G; Mulder LJ
    Psychophysiology; 1997 Sep; 34(5):553-65. PubMed ID: 9299910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.