These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11689475)

  • 41. Protonophoric activity of fatty acid analogs and derivatives in the inner mitochondrial membrane: a further argument for the fatty acid cycling model.
    Wojtczak L; Wieckowski MR; Schönfeld P
    Arch Biochem Biophys; 1998 Sep; 357(1):76-84. PubMed ID: 9721185
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncoupling protein 3 biological activity.
    Giacobino JP
    Biochem Soc Trans; 2001 Nov; 29(Pt 6):774-7. PubMed ID: 11709073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endogenous mutations in human uncoupling protein 3 alter its functional properties.
    Brown AM; Dolan JW; Willi SM; Garvey WT; Argyropoulos G
    FEBS Lett; 1999 Dec; 464(3):189-93. PubMed ID: 10618503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The metabolic vicious cycle in heart failure.
    Opie LH
    Lancet; 2004 Nov 13-19; 364(9447):1733-4. PubMed ID: 15541431
    [No Abstract]   [Full Text] [Related]  

  • 45. UCP3 is associated with Hax-1 in mitochondria in the presence of calcium ion.
    Hirasaka K; Mills EM; Haruna M; Bando A; Ikeda C; Abe T; Kohno S; Nowinski SM; Lago CU; Akagi K; Tochio H; Ohno A; Teshima-Kondo S; Okumura Y; Nikawa T
    Biochem Biophys Res Commun; 2016 Mar; 472(1):108-13. PubMed ID: 26915802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mild mitochondrial uncoupling as a therapeutic strategy.
    Cunha FM; Caldeira da Silva CC; Cerqueira FM; Kowaltowski AJ
    Curr Drug Targets; 2011 Jun; 12(6):783-9. PubMed ID: 21275885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.
    Schrauwen P; Hesselink MK
    Diabetes; 2004 Jun; 53(6):1412-7. PubMed ID: 15161742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane.
    Wojtczak L; Wieckowski MR
    J Bioenerg Biomembr; 1999 Oct; 31(5):447-55. PubMed ID: 10653473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial energy dissipation by fatty acids. Mechanisms and implications for cell death.
    Bernardi P; Penzo D; Wojtczak L
    Vitam Horm; 2002; 65():97-126. PubMed ID: 12481544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellular transport of nonesterified fatty acids.
    Pownall HJ
    J Mol Neurosci; 2001; 16(2-3):109-15; discussion 151-7. PubMed ID: 11478365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria.
    Mookerjee SA; Brand MD
    Biochim Biophys Acta; 2011 Nov; 1807(11):1474-81. PubMed ID: 21820402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uncoupling protein and nonalcoholic fatty liver disease.
    Jin X; Xiang Z; Chen YP; Ma KF; Ye YF; Li YM
    Chin Med J (Engl); 2013 Aug; 126(16):3151-5. PubMed ID: 23981628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition.
    Di Paola M; Lorusso M
    Biochim Biophys Acta; 2006; 1757(9-10):1330-7. PubMed ID: 16697347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial import of the long and short isoforms of human uncoupling protein 3.
    Renold A; Koehler CM; Murphy MP
    FEBS Lett; 2000 Jan; 465(2-3):135-40. PubMed ID: 10631320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biogenesis of mitochondria. The effects of altered membrane lipid composition on cation transport by mitochondria of Saccharomyces cerevisiae.
    Haslam JM; Spithill TW; Linnane AW; Chappell JB
    Biochem J; 1973 Aug; 134(4):949-57. PubMed ID: 4587074
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial proteinase inside human cells as anti-mitochondrial activity: a new virulence factor in infectious diseases?
    Bongaerts GP; van den Heuvel LP
    Med Hypotheses; 2008; 70(4):883-5. PubMed ID: 17825998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?
    Hamilton JA; Kamp F
    Diabetes; 1999 Dec; 48(12):2255-69. PubMed ID: 10580412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fatty acid transport: difficult or easy?
    Hamilton JA
    J Lipid Res; 1998 Mar; 39(3):467-81. PubMed ID: 9548581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Channel character of uncoupling protein-mediated transport.
    Jezek P; Jabůrek M; Garlid KD
    FEBS Lett; 2010 May; 584(10):2135-41. PubMed ID: 20206627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Control and regulation of mitochondrial oxidation of long-chained fatty acids].
    Demizieux L
    J Soc Biol; 2005; 199(2):143-55. PubMed ID: 16485601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.