BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 11689684)

  • 21. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.
    Martinowich K; Hattori D; Wu H; Fouse S; He F; Hu Y; Fan G; Sun YE
    Science; 2003 Oct; 302(5646):890-3. PubMed ID: 14593184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of methylation pattern in multiple myeloma.
    San-Miguel J; García-Sanz R; López-Pérez R
    Acta Haematol; 2005; 114 Suppl 1():23-6. PubMed ID: 16166769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure.
    Ghoshal K; Datta J; Majumder S; Bai S; Dong X; Parthun M; Jacob ST
    Mol Cell Biol; 2002 Dec; 22(23):8302-19. PubMed ID: 12417732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methyl CpG-binding proteins and transcriptional repression.
    Wade PA
    Bioessays; 2001 Dec; 23(12):1131-7. PubMed ID: 11746232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms.
    Taniguchi Y; Nosaka K; Yasunaga J; Maeda M; Mueller N; Okayama A; Matsuoka M
    Retrovirology; 2005 Oct; 2():64. PubMed ID: 16242045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Treatment of tumor cells with histone deacetylase inhibitors results in altered recruitment of methyl-CpG binding proteins to a methylated CpG island.
    Koizume S; Tachibana K; Shiraishi M
    Biol Chem; 2003 May; 384(5):787-90. PubMed ID: 12817475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active repression of methylated genes by the chromosomal protein MBD1.
    Ng HH; Jeppesen P; Bird A
    Mol Cell Biol; 2000 Feb; 20(4):1394-406. PubMed ID: 10648624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methyl-CpG-binding proteins. Targeting specific gene repression.
    Ballestar E; Wolffe AP
    Eur J Biochem; 2001 Jan; 268(1):1-6. PubMed ID: 11121095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins.
    Danam RP; Howell SR; Brent TP; Harris LC
    Mol Cancer Ther; 2005 Jan; 4(1):61-9. PubMed ID: 15657354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proviral silencing in embryonic cells is regulated by Yin Yang 1.
    Schlesinger S; Lee AH; Wang GZ; Green L; Goff SP
    Cell Rep; 2013 Jul; 4(1):50-8. PubMed ID: 23810560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profiling methyl-CpG specific determinants on transcriptionally silent chromatin.
    El-Osta A; Baker EK; Wolffe AP
    Mol Biol Rep; 2001; 28(4):209-15. PubMed ID: 12153140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene silencing. Methylation meets acetylation.
    Bestor TH
    Nature; 1998 May; 393(6683):311-2. PubMed ID: 9620794
    [No Abstract]   [Full Text] [Related]  

  • 33. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.
    Nan X; Campoy FJ; Bird A
    Cell; 1997 Feb; 88(4):471-81. PubMed ID: 9038338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene silencing by methyl-CpG-binding proteins.
    Nan X; Cross S; Bird A
    Novartis Found Symp; 1998; 214():6-16; discussion 16-21, 46-50. PubMed ID: 9601009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation.
    Santoro R; Grummt I
    Mol Cell Biol; 2005 Apr; 25(7):2539-46. PubMed ID: 15767661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation.
    Dodge JE; Ramsahoye BH; Wo ZG; Okano M; Li E
    Gene; 2002 May; 289(1-2):41-8. PubMed ID: 12036582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET.
    Matsui T; Leung D; Miyashita H; Maksakova IA; Miyachi H; Kimura H; Tachibana M; Lorincz MC; Shinkai Y
    Nature; 2010 Apr; 464(7290):927-31. PubMed ID: 20164836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer.
    Nakagawachi T; Soejima H; Urano T; Zhao W; Higashimoto K; Satoh Y; Matsukura S; Kudo S; Kitajima Y; Harada H; Furukawa K; Matsuzaki H; Emi M; Nakabeppu Y; Miyazaki K; Sekiguchi M; Mukai T
    Oncogene; 2003 Dec; 22(55):8835-44. PubMed ID: 14647440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methyl-CpG-binding domain proteins: readers of the epigenome.
    Du Q; Luu PL; Stirzaker C; Clark SJ
    Epigenomics; 2015; 7(6):1051-73. PubMed ID: 25927341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing.
    Jin SG; Jiang CL; Rauch T; Li H; Pfeifer GP
    J Biol Chem; 2005 Apr; 280(13):12700-9. PubMed ID: 15701600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.