BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11689851)

  • 1. A DNA computing readout operation based on structure-specific cleavage.
    Wang L; Hall JG; Lu M; Liu Q; Smith LM
    Nat Biotechnol; 2001 Nov; 19(11):1053-9. PubMed ID: 11689851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA computing using single-molecule hybridization detection.
    Schmidt KA; Henkel CV; Rozenberg G; Spaink HP
    Nucleic Acids Res; 2004; 32(17):4962-8. PubMed ID: 15388798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution of a 20-variable 3-SAT problem on a DNA computer.
    Braich RS; Chelyapov N; Johnson C; Rothemund PW; Adleman L
    Science; 2002 Apr; 296(5567):499-502. PubMed ID: 11896237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving satisfiability problems using a novel microarray-based DNA computer.
    Lin CH; Cheng HP; Yang CB; Yang CN
    Biosystems; 2007; 90(1):242-52. PubMed ID: 17029765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels.
    Li Z; Hayman RB; Walt DR
    J Am Chem Soc; 2008 Sep; 130(38):12622-3. PubMed ID: 18763768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partially double-stranded linear DNA probes: novel design for sensitive detection of genetically polymorphic targets.
    Luk KC; Devare SG; Hackett JR
    J Virol Methods; 2007 Sep; 144(1-2):1-11. PubMed ID: 17434605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA).
    Kiesling T; Cox K; Davidson EA; Dretchen K; Grater G; Hibbard S; Lasken RS; Leshin J; Skowronski E; Danielsen M
    Nucleic Acids Res; 2007; 35(18):e117. PubMed ID: 17827214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DNA solution of SAT problem by a modified sticker model.
    Yang CN; Yang CB
    Biosystems; 2005 Jul; 81(1):1-9. PubMed ID: 15917122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A surface invasive cleavage assay for highly parallel SNP analysis.
    Lu M; Shortreed MR; Hall JG; Wang L; Berggren T; Stevens PW; Kelso DM; Lyamichev V; Neri B; Smith LM
    Hum Mutat; 2002 Apr; 19(4):416-22. PubMed ID: 11933196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA computing on surfaces.
    Liu Q; Wang L; Frutos AG; Condon AE; Corn RM; Smith LM
    Nature; 2000 Jan; 403(6766):175-9. PubMed ID: 10646598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.
    Froehlich T; Geulen O
    Methods Mol Biol; 2008; 429():117-33. PubMed ID: 18695963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of degenerate oligonucleotide-primed polymerase chain reaction amplification and labeling methods on the sensitivity and specificity of metaphase- and array-based comparative genomic hybridization.
    Tsubosa Y; Sugihara H; Mukaisho K; Kamitani S; Peng DF; Ling ZQ; Tani T; Hattori T
    Cancer Genet Cytogenet; 2005 Apr; 158(2):156-66. PubMed ID: 15796963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface-based approach for DNA computation is unreliable for SAT.
    Li D; Li X; Huang H; Li X
    Biosystems; 2005 Oct; 82(1):20-5. PubMed ID: 16024166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex quantitative competitive polymerase chain reaction based on a multianalyte hybridization assay performed on spectrally encoded microspheres.
    Kalogianni DP; Elenis DS; Christopoulos TK; Ioannou PC
    Anal Chem; 2007 Sep; 79(17):6655-61. PubMed ID: 17645311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real time PCR and specific suspension array readout.
    Eriksson R; Jobs M; Ekstrand C; Ullberg M; Herrmann B; Landegren U; Nilsson M; Blomberg J
    J Microbiol Methods; 2009 Aug; 78(2):195-202. PubMed ID: 19490930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization-AT-tailing (HybrAT) method for sensitive and strand-specific detection of DNA and RNA.
    Nakajima N; Hanaki K; Shimizu YK; Ohnishi S; Gunji T; Nakajima A; Nozaki C; Mizuno K; Odawara T; Yoshikura H
    Biochem Biophys Res Commun; 1998 Jul; 248(3):613-20. PubMed ID: 9703975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on detection methods of two DNA probes in Mycobacterium tuberculosis].
    Yang H; Yang S; Zhuang Y; Li G; Li B
    Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):143-9. PubMed ID: 12548936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making ends meet in genetic analysis using padlock probes.
    Nilsson M; Banér J; Mendel-Hartvig M; Dahl F; Antson DO; Gullberg M; Landegren U
    Hum Mutat; 2002 Apr; 19(4):410-5. PubMed ID: 11933195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of rapid polymerase chain reactions: mathematical modeling and experimental verification.
    Whitney SE; Sudhir A; Nelson RM; Viljoen HJ
    Comput Biol Chem; 2004 Jul; 28(3):195-209. PubMed ID: 15261150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of base-modified duplex-stabilizing deoxynucleoside 5'-triphosphates to enhance the hybridization properties of primers and probes in detection polymerase chain reaction.
    Kutyavin IV
    Biochemistry; 2008 Dec; 47(51):13666-73. PubMed ID: 19046073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.