These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 11690045)

  • 1. Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations.
    Reister E; Müller M; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041804. PubMed ID: 11690045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations.
    Daoulas KCh; Müller M
    J Chem Phys; 2006 Nov; 125(18):184904. PubMed ID: 17115792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.
    Rasouli G; Rey AD
    J Chem Phys; 2011 May; 134(18):184901. PubMed ID: 21568529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinodal decomposition of polymer solutions: a parallelized molecular dynamics simulation.
    Yelash L; Virnau P; Paul W; Binder K; Müller M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031801. PubMed ID: 18851056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous crystal nucleation triggered by spinodal decomposition in polymer solutions.
    Zha L; Hu W
    J Phys Chem B; 2007 Oct; 111(39):11373-8. PubMed ID: 17850127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends.
    Morse DC; Chung JK
    J Chem Phys; 2009 Jun; 130(22):224901. PubMed ID: 19530783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study.
    Luettmer-Strathmann J; Mantina M
    J Chem Phys; 2006 May; 124(17):174907. PubMed ID: 16689604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical self-consistent field theory captures multi-scale physics during spinodal decomposition in a symmetric binary homopolymer blend.
    Grzetic DJ; Wickham RA
    J Chem Phys; 2020 Mar; 152(10):104903. PubMed ID: 32171199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations. V. incompressible homopolymer melts.
    Zhang P; Yang D; Wang Q
    J Phys Chem B; 2014 Oct; 118(41):12059-67. PubMed ID: 25233133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case.
    Reith D; Bucior K; Yelash L; Virnau P; Binder K
    J Phys Condens Matter; 2012 Mar; 24(11):115102. PubMed ID: 22301356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation of a model binary polymer solution in an external field.
    Addison CI; Artola PA; Hansen JP; Louis AA
    J Phys Chem B; 2006 Mar; 110(8):3661-5. PubMed ID: 16494421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. I. Linear polymer viscoelasticity.
    Lin YH; Das AK
    J Chem Phys; 2007 Feb; 126(7):074902. PubMed ID: 17328629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of thin polymer films: influence of solvents.
    Lin YC; Müller M; Binder K
    J Chem Phys; 2004 Aug; 121(8):3816-28. PubMed ID: 15303950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Wang-Landau study of a lattice model for lipid bilayer self-assembly.
    Gai L; Maerzke K; Cummings PT; McCabe C
    J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.
    Liu X; Seider WD; Sinno T
    J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of dense polymer melts using event chain algorithms.
    Kampmann TA; Boltz HH; Kierfeld J
    J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids.
    González-Segredo N; Nekovee M; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046304. PubMed ID: 12786484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation study of a continuous Asakura-Oosawa model.
    Zausch J; Virnau P; Binder K; Horbach J; Vink RL
    J Chem Phys; 2009 Feb; 130(6):064906. PubMed ID: 19222297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.