These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 11690077)
1. Detecting direction of coupling in interacting oscillators. Rosenblum MG; Pikovsky AS Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):045202. PubMed ID: 11690077 [TBL] [Abstract][Full Text] [Related]
2. Identification of coupling direction: application to cardiorespiratory interaction. Rosenblum MG; Cimponeriu L; Bezerianos A; Patzak A; Mrowka R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041909. PubMed ID: 12005875 [TBL] [Abstract][Full Text] [Related]
3. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Palus M; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):055201. PubMed ID: 12786211 [TBL] [Abstract][Full Text] [Related]
4. Estimation of the direction of the coupling by conditional probabilities of recurrence. Romano MC; Thiel M; Kurths J; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036211. PubMed ID: 17930327 [TBL] [Abstract][Full Text] [Related]
5. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators. Zheng Z; Wang X; Cross MC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056211. PubMed ID: 12059684 [TBL] [Abstract][Full Text] [Related]
6. Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Jamsek J; Palus M; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036207. PubMed ID: 20365832 [TBL] [Abstract][Full Text] [Related]
7. Coupling regularizes individual units in noisy populations. Ly C; Ermentrout GB Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011911. PubMed ID: 20365403 [TBL] [Abstract][Full Text] [Related]
8. Characterizing direction of coupling from experimental observations. Bezruchko B; Ponomarenko V; Rosenblum MG; Pikovsky AS Chaos; 2003 Mar; 13(1):179-84. PubMed ID: 12675424 [TBL] [Abstract][Full Text] [Related]
9. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators. He Z; Sun Y; Zhan M Chaos; 2013 Dec; 23(4):043139. PubMed ID: 24387578 [TBL] [Abstract][Full Text] [Related]
10. Phase dynamics of coupled oscillators reconstructed from data. Kralemann B; Cimponeriu L; Rosenblum M; Pikovsky A; Mrowka R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066205. PubMed ID: 18643348 [TBL] [Abstract][Full Text] [Related]
11. Inferring the directionality of coupling with conditional mutual information. Vejmelka M; Palus M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026214. PubMed ID: 18352110 [TBL] [Abstract][Full Text] [Related]
12. Engineering generalized synchronization in chaotic oscillators. Roy PK; Hens C; Grosu I; Dana SK Chaos; 2011 Mar; 21(1):013106. PubMed ID: 21456820 [TBL] [Abstract][Full Text] [Related]
13. Detecting anomalous phase synchronization from time series. Tokuda IT; Kumar Dana S; Kurths J Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500 [TBL] [Abstract][Full Text] [Related]
14. Amplitude death in coupled chaotic oscillators. Prasad A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056204. PubMed ID: 16383724 [TBL] [Abstract][Full Text] [Related]
15. Direction of coupling from phases of interacting oscillators: a permutation information approach. Bahraminasab A; Ghasemi F; Stefanovska A; McClintock PV; Kantz H Phys Rev Lett; 2008 Feb; 100(8):084101. PubMed ID: 18352623 [TBL] [Abstract][Full Text] [Related]
16. Effective detection of coupling in short and noisy bivariate data. Bhattacharya J; Pereda E; Petsche H IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):85-95. PubMed ID: 18238159 [TBL] [Abstract][Full Text] [Related]
17. Coevolution of synchronous activity and connectivity in coupled chaotic oscillators. Chen L; Qiu C; Huang H; Qi G; Wang H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056115. PubMed ID: 21230553 [TBL] [Abstract][Full Text] [Related]
18. Detecting phase synchronization in noisy data from coupled chaotic oscillators. Sun J; Zhang J; Zhou J; Xu X; Small M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046213. PubMed ID: 18517716 [TBL] [Abstract][Full Text] [Related]
19. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Lai YM; Porter MA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012905. PubMed ID: 23944536 [TBL] [Abstract][Full Text] [Related]
20. Energy balance in feedback synchronization of chaotic systems. Sarasola C; Torrealdea FJ; D'Anjou A; Moujahid A; Graña M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011606. PubMed ID: 14995632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]