These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11690126)

  • 21. Involutes: the geometry of chemical waves rotating in annular membranes.
    Lazar A; Noszticzius Z; Farkas H; Forsterling HD
    Chaos; 1995 Jun; 5(2):443-447. PubMed ID: 12780199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-dependent wave selection for information processing in excitable media.
    Stevens WM; Adamatzky A; Jahan I; Costello Bde L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066129. PubMed ID: 23005184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propagation failure dynamics of wave trains in excitable systems.
    Manz N; Ginn BT; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066218. PubMed ID: 16906957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wave trains in a model of gypsy moth population dynamics.
    Wilder JW; Vasquez DA; Christie I; Colbert JJ
    Chaos; 1995 Dec; 5(4):700-706. PubMed ID: 12780228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wave propagation in the photosensitive Belousov-Zhabotinsky reaction across an asymmetric gap.
    Ichino T; Fujio K; Matsushita M; Nakata S
    J Phys Chem A; 2009 Mar; 113(11):2304-8. PubMed ID: 19215123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves.
    Zykov VS; Bordiougov G; Brandtstädter H; Gerdes I; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016214. PubMed ID: 12935232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical size and curvature of wave formation in an excitable chemical medium.
    Foerster P; Müller SC; Hess B
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6831-4. PubMed ID: 16594068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Traveling excitable waves successively generated in a nonlinear proliferation system.
    Odagiri K; Takatsuka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056219. PubMed ID: 19518548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillatory clusters in a model of the photosensitive belousov-zhabotinsky reaction system with global feedback.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6414-20. PubMed ID: 11101977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of excitability on unpinning and termination of spiral waves.
    Luengviriya J; Sutthiopad M; Phantu M; Porjai P; Kanchanawarin J; Müller SC; Luengviriya C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052919. PubMed ID: 25493870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weakly and strongly coupled Belousov-Zhabotinsky patterns.
    Weiss S; Deegan RD
    Phys Rev E; 2017 Feb; 95(2-1):022215. PubMed ID: 28297951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling properties of conduction velocity in heterogeneous excitable media.
    Shajahan TK; Borek B; Shrier A; Glass L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046208. PubMed ID: 22181246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitation fronts in a spatially modulated light-sensitive Belousov-Zhabotinsky system.
    Manz N; Davydov VA; Zykov VS; Müller SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036207. PubMed ID: 12366224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Navigating complex labyrinths: optimal paths from chemical waves.
    Steinbock O; Tóth A; Showalter K
    Science; 1995 Feb; 267(5199):868-71. PubMed ID: 17813917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupled and forced patterns in reaction-diffusion systems.
    Epstein IR; Berenstein IB; Dolnik M; Vanag VK; Yang L; Zhabotinsky AM
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):397-408. PubMed ID: 17673412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupled instabilities drive quasiperiodic order-disorder transitions in Faraday waves.
    Frumkin V; Gokhale S
    Phys Rev E; 2023 Jul; 108(1):L012601. PubMed ID: 37583202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propagation and refraction of chemical waves generated by local periodic forcing in a reaction-diffusion model.
    Zhang R; Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016201. PubMed ID: 17677537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of myocardial capture and temporal excitable gap during spiral wave reentry in a bidomain model.
    Ashihara T; Namba T; Ikeda T; Ito M; Nakazawa K; Trayanova N
    Circulation; 2004 Feb; 109(7):920-5. PubMed ID: 14967721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmented waves in a reaction-diffusion-convection system.
    Rossi F; Budroni MA; Marchettini N; Carballido-Landeira J
    Chaos; 2012 Sep; 22(3):037109. PubMed ID: 23020500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.