These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11690158)

  • 1. Relaxation of cold plasmas and threshold lowering effect.
    Hahn Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046409. PubMed ID: 11690158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Rydberg atoms in an expanding ultracold neutral plasma.
    Killian TC; Lim MJ; Kulin S; Dumke R; Bergeson SD; Rolston SL
    Phys Rev Lett; 2001 Apr; 86(17):3759-62. PubMed ID: 11329317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultracold neutral plasmas.
    Lyon M; Rolston SL
    Rep Prog Phys; 2017 Jan; 80(1):017001. PubMed ID: 27852983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational theory of average-atom and superconfigurations in quantum plasmas.
    Blenski T; Cichocki B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056402. PubMed ID: 17677177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rydberg gas theory of a glow discharge plasma: III. Formation, occupied state distributions, free energy, and kinetic control.
    Mason RS; Douglas P
    Phys Chem Chem Phys; 2010 Apr; 12(15):3729-40. PubMed ID: 20358067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of ultracold neutral plasmas.
    Mazevet S; Collins LA; Kress JD
    Phys Rev Lett; 2002 Feb; 88(5):055001. PubMed ID: 11863734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-changing population of Rydberg states by low-energy electron-Rydberg collisions.
    Li Y; Fang F; Zhou W; Liu D; He Z; Zhao D; Najjari B; Yang J
    J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39377330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous evolution of rydberg atoms into an ultracold plasma.
    Robinson MP; Tolra BL; Noel MW; Gallagher TF; Pillet P
    Phys Rev Lett; 2000 Nov; 85(21):4466-9. PubMed ID: 11082572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel attractive force between ions in quantum plasmas.
    Shukla PK; Eliasson B
    Phys Rev Lett; 2012 Apr; 108(16):165007. PubMed ID: 22680730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombination and population inversion in plasmas generated by tunneling ionization.
    Pert GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066401. PubMed ID: 16906982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer models in nitrogen plasmas: analysis of N₂(X¹Σg⁺)-N(⁴S(u))-e⁻ interaction.
    Heritier KL; Jaffe RL; Laporta V; Panesi M
    J Chem Phys; 2014 Nov; 141(18):184302. PubMed ID: 25399142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination and enhanced metastable repopulation in the argon afterglow.
    Celik Y; Tsankov TV; Aramaki M; Yoshimura S; Luggenhölscher D; Czarnetzki U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056401. PubMed ID: 23004873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation effects on the temperature-relaxation rates in dense plasmas.
    Daligault J; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056403. PubMed ID: 19518572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wigner crystallization of single photons in cold Rydberg ensembles.
    Otterbach J; Moos M; Muth D; Fleischhauer M
    Phys Rev Lett; 2013 Sep; 111(11):113001. PubMed ID: 24074081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy relaxation in dense, strongly coupled two-temperature plasmas.
    Vorberger J; Gericke DO; Bornath T; Schlanges M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046404. PubMed ID: 20481844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating universal scaling for dynamics of Yukawa one-component plasmas after an interaction quench.
    Langin TK; Strickler T; Maksimovic N; McQuillen P; Pohl T; Vrinceanu D; Killian TC
    Phys Rev E; 2016 Feb; 93(2):023201. PubMed ID: 26986426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron spin relaxation in pseudo-Jahn-Teller low-symmetry Cu(II) complexes in diaqua(L-aspartate)Zn(II).H(2)O crystals.
    Hoffmann SK; Hilczer W; Goslar J; Massa MM; Calvo R
    J Magn Reson; 2001 Nov; 153(1):92-102. PubMed ID: 11700085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Results on the energy-relaxation rates of dense two-temperature aluminum, carbon, and silicon plasmas close to liquid-metal conditions.
    Dharma-Wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):035401. PubMed ID: 11580384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for Debye sheath expansion for proud Langmuir probes in magnetic confinement fusion plasmas.
    Tsui CK; Boedo JA; Stangeby PC;
    Rev Sci Instrum; 2018 Jan; 89(1):013505. PubMed ID: 29390679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.