These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11690287)

  • 1. Exciton formation in semiconductors and the influence of a photonic environment.
    Kira M; Hoyer W; Stroucken T; Koch SW
    Phys Rev Lett; 2001 Oct; 87(17):176401. PubMed ID: 11690287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor excitons in new light.
    Koch SW; Kira M; Khitrova G; Gibbs HM
    Nat Mater; 2006 Jul; 5(7):523-31. PubMed ID: 16819475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon injection of polaritons in semiconductor microstructures.
    Leménager G; Pisanello F; Bloch J; Kavokin A; Amo A; Lemaitre A; Galopin E; Sagnes I; De Vittorio M; Giacobino E; Bramati A
    Opt Lett; 2014 Jan; 39(2):307-10. PubMed ID: 24562133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination dynamics of type-II excitons in (Ga,In)As/GaAs/Ga(As,Sb) heterostructures.
    Gies S; Holz B; Fuchs C; Stolz W; Heimbrodt W
    Nanotechnology; 2017 Jan; 28(2):025701. PubMed ID: 27905316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas.
    Kaindl RA; Carnahan MA; Hägele D; Lövenich R; Chemla DS
    Nature; 2003 Jun; 423(6941):734-8. PubMed ID: 12802330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons.
    Chatterjee S; Ell C; Mosor S; Khitrova G; Gibbs HM; Hoyer W; Kira M; Koch SW; Prineas JP; Stolz H
    Phys Rev Lett; 2004 Feb; 92(6):067402. PubMed ID: 14995274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine structure and temperature dependence of shallow core excitons in insulators and semiconductors.
    Skibowski M; Sprussei G; Saile V
    Appl Opt; 1980 Dec; 19(23):3978-86. PubMed ID: 20234725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitonic effects in a time-dependent density functional theory.
    Igumenshchev KI; Tretiak S; Chernyak VY
    J Chem Phys; 2007 Sep; 127(11):114902. PubMed ID: 17887875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect.
    Zhang W; Govorov AO; Bryant GW
    Phys Rev Lett; 2006 Oct; 97(14):146804. PubMed ID: 17155282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved formation of excitons and electron-hole droplets in si studied using terahertz spectroscopy.
    Suzuki T; Shimano R
    Phys Rev Lett; 2009 Jul; 103(5):057401. PubMed ID: 19792534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant inelastic x-ray scattering and UV-VUV luminescence at the Be 1s edge in BeO.
    Kikas A; Käämbre T; Kooser K; Kuusik I; Kisand V; Nõmmiste E; Kirm M; Feldbach E; Ivanov V; Pustovarov V; Martinson I
    J Phys Condens Matter; 2010 Sep; 22(37):375505. PubMed ID: 21403201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.